插值是一种针对自变量的任何中间值估算函数值的技术,而计算给定范围之外的函数值的过程称为外推。
正向差异:分别由dy0,dy1,dy2,……,dyn-1表示的差异y1-y0,y2-y1,y3-y2,……,yn-yn-1分别称为第一正向差异。因此,第一个向前的区别是:
牛顿格里高正插值公式:
该公式对于在给定值集的开头附近内插f(x)的值特别有用。 h称为差的间隔,且u =(x – a)/ h ,此处a为第一项。
范例:
输入:正弦值52 输出 : 罪孽52的价值是0.788003
下面是牛顿正向插值方法的实现。
C++
// CPP Program to interpolate using
// newton forward interpolation
#include
using namespace std;
// calculating u mentioned in the formula
float u_cal(float u, int n)
{
float temp = u;
for (int i = 1; i < n; i++)
temp = temp * (u - i);
return temp;
}
// calculating factorial of given number n
int fact(int n)
{
int f = 1;
for (int i = 2; i <= n; i++)
f *= i;
return f;
}
int main()
{
// Number of values given
int n = 4;
float x[] = { 45, 50, 55, 60 };
// y[][] is used for difference table
// with y[][0] used for input
float y[n][n];
y[0][0] = 0.7071;
y[1][0] = 0.7660;
y[2][0] = 0.8192;
y[3][0] = 0.8660;
// Calculating the forward difference
// table
for (int i = 1; i < n; i++) {
for (int j = 0; j < n - i; j++)
y[j][i] = y[j + 1][i - 1] - y[j][i - 1];
}
// Displaying the forward difference table
for (int i = 0; i < n; i++) {
cout << setw(4) << x[i]
<< "\t";
for (int j = 0; j < n - i; j++)
cout << setw(4) << y[i][j]
<< "\t";
cout << endl;
}
// Value to interpolate at
float value = 52;
// initializing u and sum
float sum = y[0][0];
float u = (value - x[0]) / (x[1] - x[0]);
for (int i = 1; i < n; i++) {
sum = sum + (u_cal(u, i) * y[0][i]) /
fact(i);
}
cout << "\n Value at " << value << " is "
<< sum << endl;
return 0;
}
Java
// Java Program to interpolate using
// newton forward interpolation
class GFG{
// calculating u mentioned in the formula
static double u_cal(double u, int n)
{
double temp = u;
for (int i = 1; i < n; i++)
temp = temp * (u - i);
return temp;
}
// calculating factorial of given number n
static int fact(int n)
{
int f = 1;
for (int i = 2; i <= n; i++)
f *= i;
return f;
}
public static void main(String[] args)
{
// Number of values given
int n = 4;
double x[] = { 45, 50, 55, 60 };
// y[][] is used for difference table
// with y[][0] used for input
double y[][]=new double[n][n];
y[0][0] = 0.7071;
y[1][0] = 0.7660;
y[2][0] = 0.8192;
y[3][0] = 0.8660;
// Calculating the forward difference
// table
for (int i = 1; i < n; i++) {
for (int j = 0; j < n - i; j++)
y[j][i] = y[j + 1][i - 1] - y[j][i - 1];
}
// Displaying the forward difference table
for (int i = 0; i < n; i++) {
System.out.print(x[i]+"\t");
for (int j = 0; j < n - i; j++)
System.out.print(y[i][j]+"\t");
System.out.println();
}
// Value to interpolate at
double value = 52;
// initializing u and sum
double sum = y[0][0];
double u = (value - x[0]) / (x[1] - x[0]);
for (int i = 1; i < n; i++) {
sum = sum + (u_cal(u, i) * y[0][i]) /
fact(i);
}
System.out.println("\n Value at "+value+" is "+String.format("%.6g%n",sum));
}
}
// This code is contributed by mits
Python3
# Python3 Program to interpolate using
# newton forward interpolation
# calculating u mentioned in the formula
def u_cal(u, n):
temp = u;
for i in range(1, n):
temp = temp * (u - i);
return temp;
# calculating factorial of given number n
def fact(n):
f = 1;
for i in range(2, n + 1):
f *= i;
return f;
# Driver Code
# Number of values given
n = 4;
x = [ 45, 50, 55, 60 ];
# y[][] is used for difference table
# with y[][0] used for input
y = [[0 for i in range(n)]
for j in range(n)];
y[0][0] = 0.7071;
y[1][0] = 0.7660;
y[2][0] = 0.8192;
y[3][0] = 0.8660;
# Calculating the forward difference
# table
for i in range(1, n):
for j in range(n - i):
y[j][i] = y[j + 1][i - 1] - y[j][i - 1];
# Displaying the forward difference table
for i in range(n):
print(x[i], end = "\t");
for j in range(n - i):
print(y[i][j], end = "\t");
print("");
# Value to interpolate at
value = 52;
# initializing u and sum
sum = y[0][0];
u = (value - x[0]) / (x[1] - x[0]);
for i in range(1,n):
sum = sum + (u_cal(u, i) * y[0][i]) / fact(i);
print("\nValue at", value,
"is", round(sum, 6));
# This code is contributed by mits
C#
// C# Program to interpolate using
// newton forward interpolation
using System;
class GFG
{
// calculating u mentioned in the formula
static double u_cal(double u, int n)
{
double temp = u;
for (int i = 1; i < n; i++)
temp = temp * (u - i);
return temp;
}
// calculating factorial of given number n
static int fact(int n)
{
int f = 1;
for (int i = 2; i <= n; i++)
f *= i;
return f;
}
// Driver code
public static void Main()
{
// Number of values given
int n = 4;
double[] x = { 45, 50, 55, 60 };
// y[,] is used for difference table
// with y[,0] used for input
double[,] y=new double[n,n];
y[0,0] = 0.7071;
y[1,0] = 0.7660;
y[2,0] = 0.8192;
y[3,0] = 0.8660;
// Calculating the forward difference
// table
for (int i = 1; i < n; i++) {
for (int j = 0; j < n - i; j++)
y[j,i] = y[j + 1,i - 1] - y[j,i - 1];
}
// Displaying the forward difference table
for (int i = 0; i < n; i++) {
Console.Write(x[i]+"\t");
for (int j = 0; j < n - i; j++)
Console.Write(y[i,j]+"\t");
Console.WriteLine();
}
// Value to interpolate at
double value = 52;
// initializing u and sum
double sum = y[0,0];
double u = (value - x[0]) / (x[1] - x[0]);
for (int i = 1; i < n; i++) {
sum = sum + (u_cal(u, i) * y[0,i]) /
fact(i);
}
Console.WriteLine("\n Value at "+value+" is "+Math.Round(sum,6));
}
}
// This code is contributed by mits
PHP
C++
// CPP Program to interpolate using
// newton backward interpolation
#include
using namespace std;
// Calculation of u mentioned in formula
float u_cal(float u, int n)
{
float temp = u;
for (int i = 1; i < n; i++)
temp = temp * (u + i);
return temp;
}
// Calculating factorial of given n
int fact(int n)
{
int f = 1;
for (int i = 2; i <= n; i++)
f *= i;
return f;
}
int main()
{
// number of values given
int n = 5;
float x[] = { 1891, 1901, 1911,
1921, 1931 };
// y[][] is used for difference
// table and y[][0] used for input
float y[n][n];
y[0][0] = 46;
y[1][0] = 66;
y[2][0] = 81;
y[3][0] = 93;
y[4][0] = 101;
// Calculating the backward difference table
for (int i = 1; i < n; i++) {
for (int j = n - 1; j >= i; j--)
y[j][i] = y[j][i - 1] - y[j - 1][i - 1];
}
// Displaying the backward difference table
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++)
cout << setw(4) << y[i][j]
<< "\t";
cout << endl;
}
// Value to interpolate at
float value = 1925;
// Initializing u and sum
float sum = y[n - 1][0];
float u = (value - x[n - 1]) / (x[1] - x[0]);
for (int i = 1; i < n; i++) {
sum = sum + (u_cal(u, i) * y[n - 1][i]) /
fact(i);
}
cout << "\n Value at " << value << " is "
<< sum << endl;
return 0;
}
Java
// Java Program to interpolate using
// newton backward interpolation
class GFG
{
// Calculation of u mentioned in formula
static double u_cal(double u, int n)
{
double temp = u;
for (int i = 1; i < n; i++)
temp = temp * (u + i);
return temp;
}
// Calculating factorial of given n
static int fact(int n)
{
int f = 1;
for (int i = 2; i <= n; i++)
f *= i;
return f;
}
// Driver code
public static void main(String[] args)
{
// number of values given
int n = 5;
double x[] = { 1891, 1901, 1911,
1921, 1931 };
// y[][] is used for difference
// table and y[][0] used for input
double[][] y = new double[n][n];
y[0][0] = 46;
y[1][0] = 66;
y[2][0] = 81;
y[3][0] = 93;
y[4][0] = 101;
// Calculating the backward difference table
for (int i = 1; i < n; i++)
{
for (int j = n - 1; j >= i; j--)
y[j][i] = y[j][i - 1] - y[j - 1][i - 1];
}
// Displaying the backward difference table
for (int i = 0; i < n; i++)
{
for (int j = 0; j <= i; j++)
System.out.print(y[i][j] + "\t");
System.out.println("");;
}
// Value to interpolate at
double value = 1925;
// Initializing u and sum
double sum = y[n - 1][0];
double u = (value - x[n - 1]) / (x[1] - x[0]);
for (int i = 1; i < n; i++)
{
sum = sum + (u_cal(u, i) * y[n - 1][i]) /
fact(i);
}
System.out.println("\n Value at " + value +
" is " + String.format("%.6g%n",sum));
}
}
// This code is contributed by mits
C#
// C# Program to interpolate using
// newton backward interpolation
using System;
class GFG
{
// Calculation of u mentioned in formula
static double u_cal(double u, int n)
{
double temp = u;
for (int i = 1; i < n; i++)
temp = temp * (u + i);
return temp;
}
// Calculating factorial of given n
static int fact(int n)
{
int f = 1;
for (int i = 2; i <= n; i++)
f *= i;
return f;
}
// Driver code
static void Main()
{
// number of values given
int n = 5;
double[] x = { 1891, 1901, 1911,
1921, 1931 };
// y[][] is used for difference
// table and y[][0] used for input
double[,] y = new double[n,n];
y[0,0] = 46;
y[1,0] = 66;
y[2,0] = 81;
y[3,0] = 93;
y[4,0] = 101;
// Calculating the backward difference table
for (int i = 1; i < n; i++)
{
for (int j = n - 1; j >= i; j--)
y[j,i] = y[j,i - 1] - y[j - 1,i - 1];
}
// Displaying the backward difference table
for (int i = 0; i < n; i++)
{
for (int j = 0; j <= i; j++)
Console.Write(y[i,j]+"\t");
Console.WriteLine("");;
}
// Value to interpolate at
double value = 1925;
// Initializing u and sum
double sum = y[n - 1,0];
double u = (value - x[n - 1]) / (x[1] - x[0]);
for (int i = 1; i < n; i++)
{
sum = sum + (u_cal(u, i) * y[n - 1,i]) /
fact(i);
}
Console.WriteLine("\n Value at "+value+" is "+Math.Round(sum,4));
}
}
// This code is contributed by mits
PHP
= $i; $j--)
$y[$j][$i] = $y[$j][$i - 1] -
$y[$j - 1][$i - 1];
}
// Displaying the backward difference table
for ($i = 0; $i < $n; $i++)
{
for ($j = 0; $j <= $i; $j++)
print($y[$i][$j] . "\t");
print("\n");
}
// Value to interpolate at
$value = 1925;
// Initializing u and sum
$sum = $y[$n - 1][0];
$u = ($value - $x[$n - 1]) / ($x[1] - $x[0]);
for ($i = 1; $i < $n; $i++)
{
$sum = $sum + (u_cal($u, $i) *
$y[$n - 1][$i]) / fact($i);
}
print("\n Value at " . $value .
" is " . round($sum, 4));
// This code is contributed by chandan_jnu
?>
输出:
45 0.7071 0.0589 -0.00569999 -0.000699997
50 0.766 0.0532 -0.00639999
55 0.8192 0.0468
60 0.866
Value at 52 is 0.788003
后向差异:分别由dy1,dy2,……,dyn表示的差异y1-y0,y2-y1,……,yn-yn-1被称为第一后向差异。因此,第一个向后的差异是:
牛顿格里高向后插值公式:
当在表的末尾附近需要f(x)的值时,此公式很有用。 h称为差的间隔,并且u =(x – an)/ h ,这里an是最后一项。
范例:
投入:1925年人口输出 : 1925年的价值是96.8368
下面是牛顿向后插值方法的实现。
C++
// CPP Program to interpolate using
// newton backward interpolation
#include
using namespace std;
// Calculation of u mentioned in formula
float u_cal(float u, int n)
{
float temp = u;
for (int i = 1; i < n; i++)
temp = temp * (u + i);
return temp;
}
// Calculating factorial of given n
int fact(int n)
{
int f = 1;
for (int i = 2; i <= n; i++)
f *= i;
return f;
}
int main()
{
// number of values given
int n = 5;
float x[] = { 1891, 1901, 1911,
1921, 1931 };
// y[][] is used for difference
// table and y[][0] used for input
float y[n][n];
y[0][0] = 46;
y[1][0] = 66;
y[2][0] = 81;
y[3][0] = 93;
y[4][0] = 101;
// Calculating the backward difference table
for (int i = 1; i < n; i++) {
for (int j = n - 1; j >= i; j--)
y[j][i] = y[j][i - 1] - y[j - 1][i - 1];
}
// Displaying the backward difference table
for (int i = 0; i < n; i++) {
for (int j = 0; j <= i; j++)
cout << setw(4) << y[i][j]
<< "\t";
cout << endl;
}
// Value to interpolate at
float value = 1925;
// Initializing u and sum
float sum = y[n - 1][0];
float u = (value - x[n - 1]) / (x[1] - x[0]);
for (int i = 1; i < n; i++) {
sum = sum + (u_cal(u, i) * y[n - 1][i]) /
fact(i);
}
cout << "\n Value at " << value << " is "
<< sum << endl;
return 0;
}
Java
// Java Program to interpolate using
// newton backward interpolation
class GFG
{
// Calculation of u mentioned in formula
static double u_cal(double u, int n)
{
double temp = u;
for (int i = 1; i < n; i++)
temp = temp * (u + i);
return temp;
}
// Calculating factorial of given n
static int fact(int n)
{
int f = 1;
for (int i = 2; i <= n; i++)
f *= i;
return f;
}
// Driver code
public static void main(String[] args)
{
// number of values given
int n = 5;
double x[] = { 1891, 1901, 1911,
1921, 1931 };
// y[][] is used for difference
// table and y[][0] used for input
double[][] y = new double[n][n];
y[0][0] = 46;
y[1][0] = 66;
y[2][0] = 81;
y[3][0] = 93;
y[4][0] = 101;
// Calculating the backward difference table
for (int i = 1; i < n; i++)
{
for (int j = n - 1; j >= i; j--)
y[j][i] = y[j][i - 1] - y[j - 1][i - 1];
}
// Displaying the backward difference table
for (int i = 0; i < n; i++)
{
for (int j = 0; j <= i; j++)
System.out.print(y[i][j] + "\t");
System.out.println("");;
}
// Value to interpolate at
double value = 1925;
// Initializing u and sum
double sum = y[n - 1][0];
double u = (value - x[n - 1]) / (x[1] - x[0]);
for (int i = 1; i < n; i++)
{
sum = sum + (u_cal(u, i) * y[n - 1][i]) /
fact(i);
}
System.out.println("\n Value at " + value +
" is " + String.format("%.6g%n",sum));
}
}
// This code is contributed by mits
C#
// C# Program to interpolate using
// newton backward interpolation
using System;
class GFG
{
// Calculation of u mentioned in formula
static double u_cal(double u, int n)
{
double temp = u;
for (int i = 1; i < n; i++)
temp = temp * (u + i);
return temp;
}
// Calculating factorial of given n
static int fact(int n)
{
int f = 1;
for (int i = 2; i <= n; i++)
f *= i;
return f;
}
// Driver code
static void Main()
{
// number of values given
int n = 5;
double[] x = { 1891, 1901, 1911,
1921, 1931 };
// y[][] is used for difference
// table and y[][0] used for input
double[,] y = new double[n,n];
y[0,0] = 46;
y[1,0] = 66;
y[2,0] = 81;
y[3,0] = 93;
y[4,0] = 101;
// Calculating the backward difference table
for (int i = 1; i < n; i++)
{
for (int j = n - 1; j >= i; j--)
y[j,i] = y[j,i - 1] - y[j - 1,i - 1];
}
// Displaying the backward difference table
for (int i = 0; i < n; i++)
{
for (int j = 0; j <= i; j++)
Console.Write(y[i,j]+"\t");
Console.WriteLine("");;
}
// Value to interpolate at
double value = 1925;
// Initializing u and sum
double sum = y[n - 1,0];
double u = (value - x[n - 1]) / (x[1] - x[0]);
for (int i = 1; i < n; i++)
{
sum = sum + (u_cal(u, i) * y[n - 1,i]) /
fact(i);
}
Console.WriteLine("\n Value at "+value+" is "+Math.Round(sum,4));
}
}
// This code is contributed by mits
的PHP
= $i; $j--)
$y[$j][$i] = $y[$j][$i - 1] -
$y[$j - 1][$i - 1];
}
// Displaying the backward difference table
for ($i = 0; $i < $n; $i++)
{
for ($j = 0; $j <= $i; $j++)
print($y[$i][$j] . "\t");
print("\n");
}
// Value to interpolate at
$value = 1925;
// Initializing u and sum
$sum = $y[$n - 1][0];
$u = ($value - $x[$n - 1]) / ($x[1] - $x[0]);
for ($i = 1; $i < $n; $i++)
{
$sum = $sum + (u_cal($u, $i) *
$y[$n - 1][$i]) / fact($i);
}
print("\n Value at " . $value .
" is " . round($sum, 4));
// This code is contributed by chandan_jnu
?>
输出:
46
66 20
81 15 -5
93 12 -3 2
101 8 -4 -1 -3
Value at 1925 is 96.8368