📜  牛顿正向和反向插值

📅  最后修改于: 2021-05-07 08:11:05             🧑  作者: Mango

插值是一种针对自变量的任何中间值估算函数值的技术,而计算给定范围之外的函数值的过程称为外推

正向差异:分别由dy0,dy1,dy2,……,dyn-1表示的差异y1-y0,y2-y1,y3-y2,……,yn-yn-1分别称为第一正向差异。因此,第一个向前的区别是:
\Delta Y_{r}=Y_{r+1}-Y_{r}

牛顿格里高正插值公式
f(a+hu)=f(a)+u\Delta f(a)+\frac{u\left ( u-1 \right )}{2!}\Delta ^{2}f(a)+...+\frac{u\left ( u-1 \right )\left ( u-2 \right )...\left ( u-n+1 \right )}{n!}\Delta ^{n}f(a)

该公式对于在给定值集的开头附近内插f(x)的值特别有用。 h称为差的间隔,且u =(x – a)/ h ,此处a为第一项。

范例

输入:正弦值52 输出 : 罪孽52的价值是0.788003

下面是牛顿正向插值方法的实现。

C++
// CPP Program to interpolate using 
// newton forward interpolation
#include 
using namespace std;
  
// calculating u mentioned in the formula
float u_cal(float u, int n)
{
    float temp = u;
    for (int i = 1; i < n; i++)
        temp = temp * (u - i);
    return temp;
}
  
// calculating factorial of given number n
int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
    return f;
}
  
int main()
{
    // Number of values given
    int n = 4;
    float x[] = { 45, 50, 55, 60 };
      
    // y[][] is used for difference table
    // with y[][0] used for input
    float y[n][n];
    y[0][0] = 0.7071;
    y[1][0] = 0.7660;
    y[2][0] = 0.8192;
    y[3][0] = 0.8660;
  
    // Calculating the forward difference
    // table
    for (int i = 1; i < n; i++) {
        for (int j = 0; j < n - i; j++)
            y[j][i] = y[j + 1][i - 1] - y[j][i - 1];
    }
  
    // Displaying the forward difference table
    for (int i = 0; i < n; i++) {
        cout << setw(4) << x[i] 
             << "\t";
        for (int j = 0; j < n - i; j++)
            cout << setw(4) << y[i][j] 
                 << "\t";
        cout << endl;
    }
  
    // Value to interpolate at
    float value = 52;
  
    // initializing u and sum
    float sum = y[0][0];
    float u = (value - x[0]) / (x[1] - x[0]);
    for (int i = 1; i < n; i++) {
        sum = sum + (u_cal(u, i) * y[0][i]) /
                                 fact(i);
    }
  
    cout << "\n Value at " << value << " is " 
         << sum << endl;
    return 0;
}


Java
// Java Program to interpolate using 
// newton forward interpolation
  
class GFG{
// calculating u mentioned in the formula
static double u_cal(double u, int n)
{
    double temp = u;
    for (int i = 1; i < n; i++)
        temp = temp * (u - i);
    return temp;
}
  
// calculating factorial of given number n
static int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
    return f;
}
  
public static void main(String[] args)
{
    // Number of values given
    int n = 4;
    double x[] = { 45, 50, 55, 60 };
      
    // y[][] is used for difference table
    // with y[][0] used for input
    double y[][]=new double[n][n];
    y[0][0] = 0.7071;
    y[1][0] = 0.7660;
    y[2][0] = 0.8192;
    y[3][0] = 0.8660;
  
    // Calculating the forward difference
    // table
    for (int i = 1; i < n; i++) {
        for (int j = 0; j < n - i; j++)
            y[j][i] = y[j + 1][i - 1] - y[j][i - 1];
    }
  
    // Displaying the forward difference table
    for (int i = 0; i < n; i++) {
        System.out.print(x[i]+"\t");
        for (int j = 0; j < n - i; j++)
            System.out.print(y[i][j]+"\t");
        System.out.println();
    }
  
    // Value to interpolate at
    double value = 52;
  
    // initializing u and sum
    double sum = y[0][0];
    double u = (value - x[0]) / (x[1] - x[0]);
    for (int i = 1; i < n; i++) {
        sum = sum + (u_cal(u, i) * y[0][i]) /
                                fact(i);
    }
  
    System.out.println("\n Value at "+value+" is "+String.format("%.6g%n",sum));
}
}
// This code is contributed by mits


Python3
# Python3 Program to interpolate using 
# newton forward interpolation
  
# calculating u mentioned in the formula
def u_cal(u, n):
  
    temp = u;
    for i in range(1, n):
        temp = temp * (u - i);
    return temp;
  
# calculating factorial of given number n
def fact(n):
    f = 1;
    for i in range(2, n + 1):
        f *= i;
    return f;
  
# Driver Code
  
# Number of values given
n = 4;
x = [ 45, 50, 55, 60 ];
      
# y[][] is used for difference table
# with y[][0] used for input
y = [[0 for i in range(n)]
        for j in range(n)];
y[0][0] = 0.7071;
y[1][0] = 0.7660;
y[2][0] = 0.8192;
y[3][0] = 0.8660;
  
# Calculating the forward difference
# table
for i in range(1, n):
    for j in range(n - i):
        y[j][i] = y[j + 1][i - 1] - y[j][i - 1];
  
# Displaying the forward difference table
for i in range(n):
    print(x[i], end = "\t");
    for j in range(n - i):
        print(y[i][j], end = "\t");
    print("");
  
# Value to interpolate at
value = 52;
  
# initializing u and sum
sum = y[0][0];
u = (value - x[0]) / (x[1] - x[0]);
for i in range(1,n):
    sum = sum + (u_cal(u, i) * y[0][i]) / fact(i);
  
print("\nValue at", value, 
      "is", round(sum, 6));
  
# This code is contributed by mits


C#
// C# Program to interpolate using 
// newton forward interpolation
using System;
  
class GFG
{
// calculating u mentioned in the formula
static double u_cal(double u, int n)
{
    double temp = u;
    for (int i = 1; i < n; i++)
        temp = temp * (u - i);
    return temp;
}
  
// calculating factorial of given number n
static int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
    return f;
}
  
// Driver code
public static void Main()
{
    // Number of values given
    int n = 4;
    double[] x = { 45, 50, 55, 60 };
      
    // y[,] is used for difference table
    // with y[,0] used for input
    double[,] y=new double[n,n];
    y[0,0] = 0.7071;
    y[1,0] = 0.7660;
    y[2,0] = 0.8192;
    y[3,0] = 0.8660;
  
    // Calculating the forward difference
    // table
    for (int i = 1; i < n; i++) {
        for (int j = 0; j < n - i; j++)
            y[j,i] = y[j + 1,i - 1] - y[j,i - 1];
    }
  
    // Displaying the forward difference table
    for (int i = 0; i < n; i++) {
        Console.Write(x[i]+"\t");
        for (int j = 0; j < n - i; j++)
            Console.Write(y[i,j]+"\t");
        Console.WriteLine();
    }
  
    // Value to interpolate at
    double value = 52;
  
    // initializing u and sum
    double sum = y[0,0];
    double u = (value - x[0]) / (x[1] - x[0]);
    for (int i = 1; i < n; i++) {
        sum = sum + (u_cal(u, i) * y[0,i]) /
                                fact(i);
    }
  
    Console.WriteLine("\n Value at "+value+" is "+Math.Round(sum,6));
}
}
// This code is contributed by mits


PHP


C++
// CPP Program to interpolate using
// newton backward interpolation
#include 
using namespace std;
  
// Calculation of u mentioned in formula
float u_cal(float u, int n)
{
    float temp = u;
    for (int i = 1; i < n; i++)
        temp = temp * (u + i);
    return temp;
}
  
// Calculating factorial of given n
int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
    return f;
}
  
int main()
{
    // number of values given
    int n = 5;
    float x[] = { 1891, 1901, 1911, 
                  1921, 1931 };
                    
    // y[][] is used for difference 
    // table and y[][0] used for input
    float y[n][n];
    y[0][0] = 46;
    y[1][0] = 66;
    y[2][0] = 81;
    y[3][0] = 93;
    y[4][0] = 101;
  
    // Calculating the backward difference table
    for (int i = 1; i < n; i++) {
        for (int j = n - 1; j >= i; j--)
            y[j][i] = y[j][i - 1] - y[j - 1][i - 1];
    }
  
    // Displaying the backward difference table
    for (int i = 0; i < n; i++) {
        for (int j = 0; j <= i; j++)
            cout << setw(4) << y[i][j] 
                 << "\t";
        cout << endl;
    }
  
    // Value to interpolate at
    float value = 1925;
  
    // Initializing u and sum
    float sum = y[n - 1][0];
    float u = (value - x[n - 1]) / (x[1] - x[0]);
    for (int i = 1; i < n; i++) {
        sum = sum + (u_cal(u, i) * y[n - 1][i]) /
                                     fact(i);
    }
  
    cout << "\n Value at " << value << " is " 
         << sum << endl;
    return 0;
}


Java
// Java Program to interpolate using
// newton backward interpolation
class GFG
{
      
// Calculation of u mentioned in formula
static double u_cal(double u, int n)
{
    double temp = u;
    for (int i = 1; i < n; i++)
        temp = temp * (u + i);
    return temp;
}
  
// Calculating factorial of given n
static int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
    return f;
}
  
// Driver code
public static void main(String[] args)
{
    // number of values given
    int n = 5;
    double x[] = { 1891, 1901, 1911, 
                1921, 1931 };
                  
    // y[][] is used for difference 
    // table and y[][0] used for input
    double[][] y = new double[n][n];
    y[0][0] = 46;
    y[1][0] = 66;
    y[2][0] = 81;
    y[3][0] = 93;
    y[4][0] = 101;
  
    // Calculating the backward difference table
    for (int i = 1; i < n; i++) 
    {
        for (int j = n - 1; j >= i; j--)
            y[j][i] = y[j][i - 1] - y[j - 1][i - 1];
    }
  
    // Displaying the backward difference table
    for (int i = 0; i < n; i++) 
    {
        for (int j = 0; j <= i; j++)
            System.out.print(y[i][j] + "\t");
        System.out.println("");;
    }
  
    // Value to interpolate at
    double value = 1925;
  
    // Initializing u and sum
    double sum = y[n - 1][0];
    double u = (value - x[n - 1]) / (x[1] - x[0]);
    for (int i = 1; i < n; i++) 
    {
        sum = sum + (u_cal(u, i) * y[n - 1][i]) /
                                    fact(i);
    }
    System.out.println("\n Value at " + value + 
                    " is " + String.format("%.6g%n",sum));
}
}
  
// This code is contributed by mits


C#
// C# Program to interpolate using
// newton backward interpolation
using System;
  
class GFG
{
      
// Calculation of u mentioned in formula
static double u_cal(double u, int n)
{
    double temp = u;
    for (int i = 1; i < n; i++)
        temp = temp * (u + i);
    return temp;
}
  
// Calculating factorial of given n
static int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
    return f;
}
  
// Driver code
static void Main()
{
    // number of values given
    int n = 5;
    double[] x = { 1891, 1901, 1911, 
                1921, 1931 };
                  
    // y[][] is used for difference 
    // table and y[][0] used for input
    double[,] y = new double[n,n];
    y[0,0] = 46;
    y[1,0] = 66;
    y[2,0] = 81;
    y[3,0] = 93;
    y[4,0] = 101;
  
    // Calculating the backward difference table
    for (int i = 1; i < n; i++) 
    {
        for (int j = n - 1; j >= i; j--)
            y[j,i] = y[j,i - 1] - y[j - 1,i - 1];
    }
  
    // Displaying the backward difference table
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j <= i; j++)
            Console.Write(y[i,j]+"\t");
        Console.WriteLine("");;
    }
  
    // Value to interpolate at
    double value = 1925;
  
    // Initializing u and sum
    double sum = y[n - 1,0];
    double u = (value - x[n - 1]) / (x[1] - x[0]);
    for (int i = 1; i < n; i++) 
    {
        sum = sum + (u_cal(u, i) * y[n - 1,i]) /
                                    fact(i);
    }
  
    Console.WriteLine("\n Value at "+value+" is "+Math.Round(sum,4));
}
}
  
// This code is contributed by mits


PHP
= $i; $j--)
        $y[$j][$i] = $y[$j][$i - 1] -
                     $y[$j - 1][$i - 1];
}
  
// Displaying the backward difference table
for ($i = 0; $i < $n; $i++)
{
    for ($j = 0; $j <= $i; $j++)
        print($y[$i][$j] . "\t");
    print("\n");
}
  
// Value to interpolate at
$value = 1925;
  
// Initializing u and sum
$sum = $y[$n - 1][0];
$u = ($value - $x[$n - 1]) / ($x[1] - $x[0]);
for ($i = 1; $i < $n; $i++) 
{
    $sum = $sum + (u_cal($u, $i) * 
           $y[$n - 1][$i]) / fact($i);
}
  
print("\n Value at " . $value . 
      " is " . round($sum, 4));
  
// This code is contributed by chandan_jnu
?>


输出:

45    0.7071    0.0589    -0.00569999    -0.000699997    
  50    0.766    0.0532    -0.00639999    
  55    0.8192    0.0468    
  60    0.866    

  Value at 52 is 0.788003

后向差异:分别由dy1,dy2,……,dyn表示的差异y1-y0,y2-y1,……,yn-yn-1被称为第一后向差异。因此,第一个向后的差异是:
 \nabla Y_{r}=Y_{r}-Y_{r-1}

牛顿格里高向后插值公式
f(a+nh+uh)=f(a+nh)+u\nabla f(a+nh)+\frac{u\left ( u+1 \right )}{2!}\nabla ^{2}f(a+nh)+...+\frac{u\left ( u+1 \right )...\left ( u+\overline{n-1} \right )}{n!}\nabla ^{n}f(a+nh)

当在表的末尾附近需要f(x)的值时,此公式很有用。 h称为差的间隔,并且u =(x – an)/ h ,这里an是最后一项。

范例

投入:1925年人口输出 : 1925年的价值是96.8368

下面是牛顿向后插值方法的实现。

C++

// CPP Program to interpolate using
// newton backward interpolation
#include 
using namespace std;
  
// Calculation of u mentioned in formula
float u_cal(float u, int n)
{
    float temp = u;
    for (int i = 1; i < n; i++)
        temp = temp * (u + i);
    return temp;
}
  
// Calculating factorial of given n
int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
    return f;
}
  
int main()
{
    // number of values given
    int n = 5;
    float x[] = { 1891, 1901, 1911, 
                  1921, 1931 };
                    
    // y[][] is used for difference 
    // table and y[][0] used for input
    float y[n][n];
    y[0][0] = 46;
    y[1][0] = 66;
    y[2][0] = 81;
    y[3][0] = 93;
    y[4][0] = 101;
  
    // Calculating the backward difference table
    for (int i = 1; i < n; i++) {
        for (int j = n - 1; j >= i; j--)
            y[j][i] = y[j][i - 1] - y[j - 1][i - 1];
    }
  
    // Displaying the backward difference table
    for (int i = 0; i < n; i++) {
        for (int j = 0; j <= i; j++)
            cout << setw(4) << y[i][j] 
                 << "\t";
        cout << endl;
    }
  
    // Value to interpolate at
    float value = 1925;
  
    // Initializing u and sum
    float sum = y[n - 1][0];
    float u = (value - x[n - 1]) / (x[1] - x[0]);
    for (int i = 1; i < n; i++) {
        sum = sum + (u_cal(u, i) * y[n - 1][i]) /
                                     fact(i);
    }
  
    cout << "\n Value at " << value << " is " 
         << sum << endl;
    return 0;
}

Java

// Java Program to interpolate using
// newton backward interpolation
class GFG
{
      
// Calculation of u mentioned in formula
static double u_cal(double u, int n)
{
    double temp = u;
    for (int i = 1; i < n; i++)
        temp = temp * (u + i);
    return temp;
}
  
// Calculating factorial of given n
static int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
    return f;
}
  
// Driver code
public static void main(String[] args)
{
    // number of values given
    int n = 5;
    double x[] = { 1891, 1901, 1911, 
                1921, 1931 };
                  
    // y[][] is used for difference 
    // table and y[][0] used for input
    double[][] y = new double[n][n];
    y[0][0] = 46;
    y[1][0] = 66;
    y[2][0] = 81;
    y[3][0] = 93;
    y[4][0] = 101;
  
    // Calculating the backward difference table
    for (int i = 1; i < n; i++) 
    {
        for (int j = n - 1; j >= i; j--)
            y[j][i] = y[j][i - 1] - y[j - 1][i - 1];
    }
  
    // Displaying the backward difference table
    for (int i = 0; i < n; i++) 
    {
        for (int j = 0; j <= i; j++)
            System.out.print(y[i][j] + "\t");
        System.out.println("");;
    }
  
    // Value to interpolate at
    double value = 1925;
  
    // Initializing u and sum
    double sum = y[n - 1][0];
    double u = (value - x[n - 1]) / (x[1] - x[0]);
    for (int i = 1; i < n; i++) 
    {
        sum = sum + (u_cal(u, i) * y[n - 1][i]) /
                                    fact(i);
    }
    System.out.println("\n Value at " + value + 
                    " is " + String.format("%.6g%n",sum));
}
}
  
// This code is contributed by mits

C#

// C# Program to interpolate using
// newton backward interpolation
using System;
  
class GFG
{
      
// Calculation of u mentioned in formula
static double u_cal(double u, int n)
{
    double temp = u;
    for (int i = 1; i < n; i++)
        temp = temp * (u + i);
    return temp;
}
  
// Calculating factorial of given n
static int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
    return f;
}
  
// Driver code
static void Main()
{
    // number of values given
    int n = 5;
    double[] x = { 1891, 1901, 1911, 
                1921, 1931 };
                  
    // y[][] is used for difference 
    // table and y[][0] used for input
    double[,] y = new double[n,n];
    y[0,0] = 46;
    y[1,0] = 66;
    y[2,0] = 81;
    y[3,0] = 93;
    y[4,0] = 101;
  
    // Calculating the backward difference table
    for (int i = 1; i < n; i++) 
    {
        for (int j = n - 1; j >= i; j--)
            y[j,i] = y[j,i - 1] - y[j - 1,i - 1];
    }
  
    // Displaying the backward difference table
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j <= i; j++)
            Console.Write(y[i,j]+"\t");
        Console.WriteLine("");;
    }
  
    // Value to interpolate at
    double value = 1925;
  
    // Initializing u and sum
    double sum = y[n - 1,0];
    double u = (value - x[n - 1]) / (x[1] - x[0]);
    for (int i = 1; i < n; i++) 
    {
        sum = sum + (u_cal(u, i) * y[n - 1,i]) /
                                    fact(i);
    }
  
    Console.WriteLine("\n Value at "+value+" is "+Math.Round(sum,4));
}
}
  
// This code is contributed by mits

的PHP

= $i; $j--)
        $y[$j][$i] = $y[$j][$i - 1] -
                     $y[$j - 1][$i - 1];
}
  
// Displaying the backward difference table
for ($i = 0; $i < $n; $i++)
{
    for ($j = 0; $j <= $i; $j++)
        print($y[$i][$j] . "\t");
    print("\n");
}
  
// Value to interpolate at
$value = 1925;
  
// Initializing u and sum
$sum = $y[$n - 1][0];
$u = ($value - $x[$n - 1]) / ($x[1] - $x[0]);
for ($i = 1; $i < $n; $i++) 
{
    $sum = $sum + (u_cal($u, $i) * 
           $y[$n - 1][$i]) / fact($i);
}
  
print("\n Value at " . $value . 
      " is " . round($sum, 4));
  
// This code is contributed by chandan_jnu
?>

输出:

46    
  66      20    
  81      15      -5    
  93      12      -3       2    
 101       8      -4      -1      -3    

 Value at 1925 is 96.8368