给定尺寸为M * N的矩阵grid [] [] ,三个整数X,Y和K ,任务是检查是否存在从单元(X,Y)到矩阵的任何边界单元的路径,从而路径中存在的矩阵元素之和最多为K。如果不存在这样的路径,请打印“ No” 。否则,打印“是” 。任何单元格都可能向上,向下,向左或向右移动。
例子:
Input: grid[][] = {{25, 5, 25, 25, 25, 25}, {25, 1, 1, 5, 12, 25}, {25, 1, 12, 0, 15, 25}, {22, 1, 11, 2, 19, 15}, {25, 2, 2, 1, 12, 15}, {25, 9, 10, 1, 11, 25}, {25, 25, 25, 25, 25, 25}}, X = 2, Y = 3, K = 17
Output: Yes
Explanation:
Below image illustrates one of the possible ways to reach a boundary element of the given matrix from the cell (2, 3):
The concerned path is (2, 3) -> (3, 3) -> (4, 3) -> (4, 2) -> (4, 1) -> (3, 1) -> (2, 1) -> (1, 1).
The cost of the path = 0 + 2 + 1 + 2 + 2 + 1 + 1 + 1 + 0 = 15( < K).
Input: grid[][] = {{1, 2, 3}, {1, 2, 3}, {3, 4, 5}}, X = 1, Y = 1, K = 0
Output: -1
方法:可以通过使用回溯法考虑从给定起始单元格开始的所有可能路径,并检查到给定矩阵的边界单元是否存在其组成元素之和等于K的路径,从而解决给定问题。
请按照以下步骤解决问题:
- 定义一个递归函数,例如findPath(X,Y,K,board) ,以检查是否存在从起始像元(X,Y)到任何边界元素的路径。
- 基本情况:如果达到X <0或Y <0或X> = M或Y> = N ,则返回true 。
- 现在,检查grid [X] [Y]> =K 。如果发现为真,则标记当前访问的单元格。将K减小grid [X] [Y]的值,然后访问未访问的相邻像元,即递归调用findPath(X + 1,Y,K),findPath(X,Y + 1,K),findPath(X – 1,Y,K)和findPath(X,Y – 1,K) 。
- 如果上述任何递归调用返回true ,则从当前递归调用返回true 。
- 否则,将当前单元标记为未访问。
- 如果以上条件均不满足,则从当前递归调用中返回false 。
- 现在,如果函数findPath(X,Y,K)返回true,则输出“ Yes” 。否则,打印“否” 。
下面是上述方法的实现:
C++
// C++ program for the above approach
#include
using namespace std;
// Function to check if it is valid
// to move to the given index or not
bool isValid(vector >& board,
int i, int j, int K)
{
if (board[i][j] <= K) {
return true;
}
// Otherwise return false
return false;
}
// Function to check if there exists a
// path from the cell (X, Y) of the
// matrix to any boundary cell with
// sum of elements at most K or not
bool findPath(vector >& board,
int X, int Y,
int M, int N, int K)
{
// Base Case
if (X < 0 || X == M
|| Y < 0 || Y == N) {
return true;
}
// If K >= board[X][Y]
if (isValid(board, X, Y, K)) {
// Stores the current element
int board_XY = board[X][Y];
// Mark the current cell as visited
board[X][Y] = INT_MAX;
// Visit all the adjacent cells
if (findPath(board, X + 1, Y, M,
N, K - board_XY)
|| findPath(board, X - 1, Y, M,
N, K - board_XY)
|| findPath(board, X, Y + 1, M,
N, K - board_XY)
|| findPath(board, X, Y - 1, M,
N, K - board_XY)) {
return true;
}
// Mark the cell unvisited
board[X][Y] = board_XY;
}
// Return false
return false;
}
// Driver Code
int main()
{
vector > grid = {
{ 25, 5, 25, 25, 25, 25 },
{ 25, 1, 1, 5, 12, 25 },
{ 25, 1, 12, 0, 15, 25 },
{ 22, 1, 11, 2, 19, 15 },
{ 25, 2, 2, 1, 12, 15 },
{ 25, 9, 10, 1, 11, 25 },
{ 25, 25, 25, 25, 25, 25 }
};
int K = 17;
int M = grid.size();
int N = grid[0].size();
int X = 2, Y = 3;
if (findPath(grid, X, Y, M, N, K))
cout << "Yes";
else
cout << "No";
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG{
// Function to check if it is valid
// to move to the given index or not
static boolean isValid(int[][] board, int i,
int j, int K)
{
if (board[i][j] <= K)
{
return true;
}
// Otherwise return false
return false;
}
// Function to check if there exists a
// path from the cell (X, Y) of the
// matrix to any boundary cell with
// sum of elements at most K or not
static boolean findPath(int[][] board, int X, int Y,
int M, int N, int K)
{
// Base Case
if (X < 0 || X == M || Y < 0 || Y == N)
{
return true;
}
// If K >= board[X][Y]
if (isValid(board, X, Y, K))
{
// Stores the current element
int board_XY = board[X][Y];
// Mark the current cell as visited
board[X][Y] = Integer.MAX_VALUE;
// Visit all the adjacent cells
if (findPath(board, X + 1, Y, M, N,
K - board_XY) ||
findPath(board, X - 1, Y, M, N,
K - board_XY) ||
findPath(board, X, Y + 1, M, N,
K - board_XY) ||
findPath(board, X, Y - 1, M, N,
K - board_XY))
{
return true;
}
// Mark the cell unvisited
board[X][Y] = board_XY;
}
// Return false
return false;
}
// Driver Code
public static void main(String[] args)
{
int[][] grid = { { 25, 5, 25, 25, 25, 25 },
{ 25, 1, 1, 5, 12, 25 },
{ 25, 1, 12, 0, 15, 25 },
{ 22, 1, 11, 2, 19, 15 },
{ 25, 2, 2, 1, 12, 15 },
{ 25, 9, 10, 1, 11, 25 },
{ 25, 25, 25, 25, 25, 25 } };
int K = 17;
int M = grid.length;
int N = grid[0].length;
int X = 2, Y = 3;
if (findPath(grid, X, Y, M, N, K))
System.out.println("Yes");
else
System.out.println("No");
}
}
// This code is contributed by ukasp
Python3
# Python3 program for the above approach
import sys
INT_MAX = sys.maxsize
# Function to check if it is valid
# to move to the given index or not
def isValid(board, i, j, K):
if (board[i][j] <= K):
return True
# Otherwise return false
return False
# Function to check if there exists a
# path from the cell (X, Y) of the
# matrix to any boundary cell with
# sum of elements at most K or not
def findPath(board, X, Y, M, N, K):
# Base Case
if (X < 0 or X == M or
Y < 0 or Y == N):
return True
# If K >= board[X][Y]
if (isValid(board, X, Y, K)):
# Stores the current element
board_XY = board[X][Y]
# Mark the current cell as visited
board[X][Y] = INT_MAX
# Visit all the adjacent cells
if (findPath(board, X + 1, Y, M,
N, K - board_XY) or
findPath(board, X - 1, Y, M,
N, K - board_XY) or
findPath(board, X, Y + 1, M,
N, K - board_XY) or
findPath(board, X, Y - 1, M,
N, K - board_XY)):
return True;
# Mark the cell unvisited
board[X][Y] = board_XY
# Return false
return False
# Driver Code
if __name__ == "__main__":
grid = [
[ 25, 5, 25, 25, 25, 25 ],
[ 25, 1, 1, 5, 12, 25 ],
[ 25, 1, 12, 0, 15, 25 ],
[ 22, 1, 11, 2, 19, 15 ],
[ 25, 2, 2, 1, 12, 15 ],
[ 25, 9, 10, 1, 11, 25 ],
[ 25, 25, 25, 25, 25, 25 ] ]
K = 17
M = len(grid)
N = len(grid[0])
X = 2
Y = 3
if (findPath(grid, X, Y, M, N, K)):
print("Yes")
else:
print("No")
# This code is contributed by AnkThon
C#
// C# program for the above approach
using System;
class GFG{
// Function to check if it is valid
// to move to the given index or not
static bool isValid(int[,] board, int i,
int j, int K)
{
if (board[i, j] <= K)
{
return true;
}
// Otherwise return false
return false;
}
// Function to check if there exists a
// path from the cell (X, Y) of the
// matrix to any boundary cell with
// sum of elements at most K or not
static bool findPath(int[,] board, int X, int Y,
int M, int N, int K)
{
// Base Case
if (X < 0 || X == M ||
Y < 0 || Y == N)
{
return true;
}
// If K >= board[X][Y]
if (isValid(board, X, Y, K))
{
// Stores the current element
int board_XY = board[X, Y];
// Mark the current cell as visited
board[X, Y] = int.MaxValue;
// Visit all the adjacent cells
if (findPath(board, X + 1, Y, M, N,
K - board_XY) ||
findPath(board, X - 1, Y, M, N,
K - board_XY) ||
findPath(board, X, Y + 1, M, N,
K - board_XY) ||
findPath(board, X, Y - 1, M, N,
K - board_XY))
{
return true;
}
// Mark the cell unvisited
board[X, Y] = board_XY;
}
// Return false
return false;
}
// Driver Code
public static void Main(string[] args)
{
int[,] grid = { { 25, 5, 25, 25, 25, 25 },
{ 25, 1, 1, 5, 12, 25 },
{ 25, 1, 12, 0, 15, 25 },
{ 22, 1, 11, 2, 19, 15 },
{ 25, 2, 2, 1, 12, 15 },
{ 25, 9, 10, 1, 11, 25 },
{ 25, 25, 25, 25, 25, 25 } };
int K = 17;
int M = grid.Length;
int N = grid.GetLength(0);
int X = 2, Y = 3;
if (findPath(grid, X, Y, M, N, K))
Console.WriteLine("Yes");
else
Console.WriteLine("No");
}
}
// This code is contributed by AnkThon
Javascript
Yes
时间复杂度: O(3 N * M )
辅助空间: O(N * M)