1.大数据:
大数据指的是海量数据,并且数据随时间以快速的速度增长。它包含结构化,非结构化和半结构化数据,这些数据是如此之大和复杂,并且无法通过任何传统的数据管理工具进行管理。需要专用的大数据管理工具来存储和处理数据。容量,速度和多样性代表了大数据的主要特征。
股票交易所,数据仓库,传感器,社交媒体站点,喷气机引擎等是大数据的不同来源。
大数据应用:
- 金融服务大数据
- 通讯中的大数据
- 通讯,媒体和娱乐
- 零售大数据
- 银行与证券
大数据的好处:
- 多元化收入流
- 大数据是安全的
- 权威且可行
- 产品价格优化
- 更大的创新
2.数据分析:
数据分析是指分析原始数据并找出有关该信息的结论的过程。通过检查原始数据并从中提取有价值的见解,它有助于获取原始数据并揭示模式。数据分析的目的是提高生产力和业务收益。它可以帮助公司更好地了解他们的客户,相应地计划策略并开发产品。描述性,诊断性,预测性,说明性是数据分析的四种基本类型。
数据分析的应用:
- 卫生保健
- 出差旅行
- 赌博
- 能源管理
- 风险检测与管理
数据分析的好处:
- 改善性能
- 更好的决策
- 保持质量和一致性
- 数据驱动的营销
- 实时预测和监控
大数据与数据分析之间的区别:
S.No. | BIG DATA | DATA ANALYTICS |
---|---|---|
01. | Big data refers to the large volume of data and also the data is increasing with a rapid speed with respect to time. | Data Analytics refers to the process of analyzing the raw data and finding out conclusions about that information. |
02. | Big data includes Structured, Unstructured and Semi-structured the three types of data. | Descriptive, Diagnostic, Predictive, Prescriptive are the four basic types of data analytics. |
03. | The purpose of big data is to store huge volume of data and to process it. | The purpose of data analytics is to analyze the raw data and find out insights for the information. |
04. | Parallel computing and other complex automation tools are used to handle big data. | Predictive and statistical modelling with relatively simple tools are used to handle data analytics. |
05. | Big data operations are handled by big data professionals. | Data analytics is performed by skilled data analysts. |
06. | Big data analysts need the knowledge of programming, NoSQL databases, distributed systems and frameworks. | Data Analysts need the knowledge of programming, statistics, and mathematics. |
07. | Big data is mainly found in financial services, Media and Entertainment, communication, Banking, information technology, and retail etc. | Data analytics is mainly used in business for risk detection and management, science, travelling, health care, Gaming, energy management, and information technology. |
08. | It supports in dealing with huge volume of data. | It supports in examining raw data and recognizing useful information. |
09. | It is considered as the first step as first big data generated and then stored. | It is considered as second step as it performs analysis on the large data sets. |
10. | Some of the big data tools are Apache Hadoop, Cloudera Distribution for Hadoop, Cassandra, MongoDB etc. | Some of the data analytics tools are Tableau Public, Python, Apache Spark, Excel, RapidMiner, KNIME etc. |