给定一个值K和一个二叉树,任务是找出所有元素按位 OR等于 K 的子树的数量。
例子:
Input: K = 5, Tree = 2
/ \
1 1
/ \ \
10 5 4
Output: 2
Explanation:
Subtree 1:
5
It has only one element i.e. 5.
So bitwise OR of subtree = 5
Subtree 2:
1
\
4
it has 2 elements and bitwise OR of them is also 5
Input: K = 3, Tree = 4
/ \
3 9
/ \
2 2
Output: 1
方法:
- 使用前序遍历递归地遍历树。
- 对于每个节点,继续计算其子树的按位或:
bitwise OR of its subtree = (bitwise OR of node’s left subtree) | (bitwise OR of node’s right subtree) | (node’s value)
- 如果任何子树的按位 OR 为 K,则递增计数器变量。
- 将计数器中的值打印为所需的计数。
C++
// C++ program to find the count of
// subtrees in a Binary Tree
// having bitwise OR value K
#include
using namespace std;
// A binary tree node
struct Node {
int data;
struct Node *left, *right;
};
// A utility function to
// allocate a new node
struct Node* newNode(int data)
{
struct Node* newNode = new Node;
newNode->data = data;
newNode->left
= newNode->right = NULL;
return (newNode);
}
// Recursive Function to compute the count
int rec(Node* root, int& res, int& k)
{
// Base Case:
// If node is NULL, return 0
if (root == NULL) {
return 0;
}
// Calculating the bitwise OR
// of the current subtree
int orr = root->data;
orr |= rec(root->left, res, k);
orr |= rec(root->right, res, k);
// Increment res
// if xr is equal to k
if (orr == k) {
res++;
}
// Return the bitwise OR value
// of the current subtree
return orr;
}
// Function to find the required count
int FindCount(Node* root, int K)
{
// Initialize result variable 'res'
int res = 0;
// Recursively traverse the tree
// and compute the count
rec(root, res, K);
// return the count 'res'
return res;
}
// Driver program
int main(void)
{
/*
2
/ \
1 1
/ \ \
10 5 4
*/
// Create the binary tree
// by adding nodes to it
struct Node* root = newNode(2);
root->left = newNode(1);
root->right = newNode(1);
root->right->right = newNode(4);
root->left->left = newNode(10);
root->left->right = newNode(5);
int K = 5;
cout << FindCount(root, K);
return 0;
}
Java
// Java program to find the count of
// subtrees in a Binary Tree
// having bitwise OR value K
import java.io.*;
class GFG
{
// A binary tree node
static class Node
{
public int data;
public Node left, right;
};
static int res;
static int k;
// A utility function to
// allocate a new node
static Node newNode(int data)
{
Node newNode = new Node();
newNode.data = data;
newNode.left = null;
newNode.right = null;
return newNode;
}
static int rec(Node root)
{
// Base Case:
// If node is null, return 0
if (root == null)
{
return 0;
}
// Calculating the XOR
// of the current subtree
int xr = (root.data);
xr |= rec(root.left);
xr |= rec(root.right);
// Increment res
// if xr is equal to k
if (xr == k)
{
res++;
}
// Return the XOR value
// of the current subtree
return xr;
}
// Function to find the required count
static int findCount(Node root, int K)
{
// Initialize result variable 'res'
res = 0;
k = K;
// Recursively traverse the tree
// and compute the count
rec(root);
// Return the count 'res'
return res;
}
// Driver code
public static void main (String[] args)
{
/*
2
/ \
1 1
/ \ \
10 5 4
*/
// Create the binary tree
// by adding nodes to it
Node root = newNode(2);
root.left = newNode(1);
root.right = newNode(1);
root.right.right = newNode(4);
root.left.left =newNode(10);
root.left.right = newNode(5);
int K = 5;
System.out.println(findCount(root, K));
}
}
// This code is contributed by avanitrachhadiya2155
Python3
# Python3 program to find the count of
# subtrees in a Binary Tree
# having bitwise OR value K
# A binary tree node
class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None
# A utility function to
# allocate a new node
def newNode(data):
temp = Node(data)
return temp
# Recursive Function to compute the count
def rec(root, res, k):
# Base Case:
# If node is NULL, return 0
if (root == None):
return [0, res];
# Calculating the bitwise OR
# of the current subtree
orr = root.data;
tmp, res = rec(root.left, res, k);
orr |= tmp
tmp, res = rec(root.right, res, k);
orr |= tmp
# Increment res
# if xr is equal to k
if (orr == k):
res += 1
# Return the bitwise OR value
# of the current subtree
return orr, res;
# Function to find the required count
def FindCount(root, K):
# Initialize result variable 'res'
res = 0;
# Recursively traverse the tree
# and compute the count
tmp,res = rec(root, res, K);
# return the count 'res'
return res;
# Driver program
if __name__=='__main__':
'''
2
/ \
1 1
/ \ \
10 5 4
'''
# Create the binary tree
# by adding nodes to it
root = newNode(2);
root.left = newNode(1);
root.right = newNode(1);
root.right.right = newNode(4);
root.left.left = newNode(10);
root.left.right = newNode(5);
K = 5;
print(FindCount(root, K))
# This code is contributed by rutvik_56
C#
// C# program to find the count of
// subtrees in a Binary Tree
// having bitwise OR value K
using System;
class GFG{
// A binary tree node
class Node
{
public int data;
public Node left, right;
};
static int res;
static int k;
// A utility function to
// allocate a new node
static Node newNode(int data)
{
Node newNode = new Node();
newNode.data = data;
newNode.left= null;
newNode.right = null;
return newNode;
}
static int rec(Node root)
{
// Base Case:
// If node is null, return 0
if (root == null)
{
return 0;
}
// Calculating the XOR
// of the current subtree
int xr = (root.data);
xr |= rec(root.left);
xr |= rec(root.right);
// Increment res
// if xr is equal to k
if (xr == k)
{
res++;
}
// Return the XOR value
// of the current subtree
return xr;
}
// Function to find the required count
static int findCount(Node root, int K)
{
// Initialize result variable 'res'
res = 0;
k = K;
// Recursively traverse the tree
// and compute the count
rec(root);
// Return the count 'res'
return res;
}
// Driver code
public static void Main(String []args)
{
/*
2
/ \
1 1
/ \ \
10 5 4
*/
// Create the binary tree
// by adding nodes to it
Node root = newNode(2);
root.left = newNode(1);
root.right = newNode(1);
root.right.right = newNode(4);
root.left.left =newNode(10);
root.left.right = newNode(5);
int K = 5;
Console.WriteLine(findCount(root, K));
}
}
// This code is contributed by mohit kumar
输出:
2
时间复杂度:与上述方法一样,我们只对每个节点迭代一次,因此需要O(N)时间,其中 N 是二叉树中的节点数。
辅助空间复杂度:由于在上述方法中没有使用额外的空间,因此辅助空间复杂度将为O(1) 。
如果您想与行业专家一起参加直播课程,请参阅Geeks Classes Live