📜  自动换行问题 | DP-19

📅  最后修改于: 2021-09-17 07:06:45             🧑  作者: Mango

给定一个单词序列,以及一行中可以放置的字符数(行宽)的限制。在给定的序列中放置换行符,以便整齐地打印行。假设每个字的长度小于线宽。
像 MS Word 这样的文字处理器可以完成放置换行符的任务。这个想法是有平衡的线条。换句话说,不是有大量额外空格的几行和一些带有少量额外空格的行。

The extra spaces includes spaces put at the end of every line except the last one.  
The problem is to minimize the following total cost.
 Cost of a line = (Number of extra spaces in the line)^3
 Total Cost = Sum of costs for all lines

For example, consider the following string and line width M = 15
 "Geeks for Geeks presents word wrap problem" 
     
Following is the optimized arrangement of words in 3 lines
Geeks for Geeks
presents word
wrap problem 

The total extra spaces in line 1, line 2 and line 3 are 0, 2 and 3 respectively. 
So optimal value of total cost is 0 + 2*2 + 3*3 = 13

请注意,总成本函数不是额外空间的总和,而是额外空间的立方(或平方)的总和。这个成本函数背后的想法是平衡线之间的空间。例如,考虑以下两个相同词组的排列:
1)有 3 行。一行有 3 个额外的空格,所有其他行有 0 个额外的空格。总额外空间 = 3 + 0 + 0 = 3。总成本 = 3*3*3 + 0*0*0 + 0*0*0 = 27。
2)有 3 行。 3 行中的每一行都有一个额外的空间。总额外空间 = 1 + 1 + 1 = 3。总成本 = 1*1*1 + 1*1*1 + 1*1*1 = 3。
在这两种情况下,额外空格总数均为 3,但应首选第二种排列,因为所有三行中的额外空格都是平衡的。具有三次总和的成本函数可以达到目的,因为第二种情况下的总成本值较小。

方法一(贪心解)
贪婪的解决方案是将尽可能多的单词放在第一行。然后对第二行做同样的事情,依此类推,直到放置所有单词。该解在很多情况下都给出了最优解,但并不是在所有情况下都给出了最优解。例如,考虑以下字符串“aaa bb cc ddddd”和线宽为 6。贪婪方法将产生以下输出。

aaa bb 
cc 
ddddd

以上3行中多余的空格分别为0、4、1。所以总成本是 0 + 64 + 1 = 65。
但上述解决方案并不是最好的解决方案。下面的排列有更平衡的空间。因此总成本函数的值较小。

aaa
bb cc
ddddd

以上3行中多余的空格分别为3、1、1。所以总成本是 27 + 1 + 1 = 29。
尽管在某些情况下是次优的,但许多文字处理器(如 MS Word 和 OpenOffice.org Writer)都使用贪婪方法。
方法二(动态规划)
以下动态方法严格遵循 Cormen 书的解决方案中给出的算法。首先,我们计算二维表 lc[][] 中所有可能行的成本。值 lc[i][j] 表示将 i 到 j 的单词放在一行中的成本,其中 i 和 j 是输入序列中单词的索引。如果从 i 到 j 的单词序列不能放在一行中,则 lc[i][j] 被认为是无限的(以避免它成为解决方案的一部分)。一旦我们构建了 lc[][] 表,我们就可以使用以下递归公式计算总成本。在下面的公式中,C[j] 是从 1 到 j 排列词的优化总成本。

上述递归具有重叠子问题的性质。例如,子问题 c(2) 的解被 c(3)、C(4) 等使用。所以动态规划用于存储子问题的结果。数组 c[] 可以从左到右计算,因为每个值只依赖于较早的值。
为了打印输出,我们跟踪哪些单词出现在哪些行上,我们可以保留一个平行的 p 数组,指向每个 c 值的来源。最后一行从单词 p[n] 开始,经过单词 n。前一行从单词 p[p[n]] 开始,经过单词 p[n ] – 1 等。函数printSolution() 使用 p[] 打印解决方案。
在下面的程序中,输入是一个数组 l[],表示序列中单词的长度。值 l[i] 表示输入序列中第 i 个单词(i 从 1 开始)的长度。

C++
// A Dynamic programming solution for Word Wrap Problem
#include 
using namespace std;
#define INF INT_MAX
 
// A utility function to print the solution
int printSolution (int p[], int n);
 
// l[] represents lengths of different words in input sequence.
// For example, l[] = {3, 2, 2, 5} is for a sentence like
// "aaa bb cc ddddd". n is size of l[] and M is line width
// (maximum no. of characters that can fit in a line)
void solveWordWrap (int l[], int n, int M)
{
    // For simplicity, 1 extra space is used in all below arrays
 
    // extras[i][j] will have number of extra spaces if words from i
    // to j are put in a single line
    int extras[n+1][n+1];
 
    // lc[i][j] will have cost of a line which has words from
    // i to j
    int lc[n+1][n+1];
 
    // c[i] will have total cost of optimal arrangement of words
    // from 1 to i
    int c[n+1];
 
    // p[] is used to print the solution.
    int p[n+1];
 
    int i, j;
 
    // calculate extra spaces in a single line. The value extra[i][j]
    // indicates extra spaces if words from word number i to j are
    // placed in a single line
    for (i = 1; i <= n; i++)
    {
        extras[i][i] = M - l[i-1];
        for (j = i+1; j <= n; j++)
            extras[i][j] = extras[i][j-1] - l[j-1] - 1;
    }
 
    // Calculate line cost corresponding to the above calculated extra
    // spaces. The value lc[i][j] indicates cost of putting words from
    // word number i to j in a single line
    for (i = 1; i <= n; i++)
    {
        for (j = i; j <= n; j++)
        {
            if (extras[i][j] < 0)
                lc[i][j] = INF;
            else if (j == n && extras[i][j] >= 0)
                lc[i][j] = 0;
            else
                lc[i][j] = extras[i][j]*extras[i][j];
        }
    }
 
    // Calculate minimum cost and find minimum cost arrangement.
    // The value c[j] indicates optimized cost to arrange words
    // from word number 1 to j.
    c[0] = 0;
    for (j = 1; j <= n; j++)
    {
        c[j] = INF;
        for (i = 1; i <= j; i++)
        {
            if (c[i-1] != INF && lc[i][j] != INF &&
                           (c[i-1] + lc[i][j] < c[j]))
            {
                c[j] = c[i-1] + lc[i][j];
                p[j] = i;
            }
        }
    }
 
    printSolution(p, n);
}
 
int printSolution (int p[], int n)
{
    int k;
    if (p[n] == 1)
        k = 1;
    else
        k = printSolution (p, p[n]-1) + 1;
    cout<<"Line number "<


C
// A Dynamic programming solution for Word Wrap Problem
#include 
#include 
#define INF INT_MAX
 
// A utility function to print the solution
int printSolution (int p[], int n);
 
// l[] represents lengths of different words in input sequence.
// For example, l[] = {3, 2, 2, 5} is for a sentence like
// "aaa bb cc ddddd". n is size of l[] and M is line width
// (maximum no. of characters that can fit in a line)
void solveWordWrap (int l[], int n, int M)
{
    // For simplicity, 1 extra space is used in all below arrays
 
    // extras[i][j] will have number of extra spaces if words from i
    // to j are put in a single line
    int extras[n+1][n+1]; 
 
    // lc[i][j] will have cost of a line which has words from
    // i to j
    int lc[n+1][n+1];
  
    // c[i] will have total cost of optimal arrangement of words
    // from 1 to i
    int c[n+1];
 
    // p[] is used to print the solution. 
    int p[n+1];
 
    int i, j;
 
    // calculate extra spaces in a single line.  The value extra[i][j]
    // indicates extra spaces if words from word number i to j are
    // placed in a single line
    for (i = 1; i <= n; i++)
    {
        extras[i][i] = M - l[i-1];
        for (j = i+1; j <= n; j++)
            extras[i][j] = extras[i][j-1] - l[j-1] - 1;
    }
 
    // Calculate line cost corresponding to the above calculated extra
    // spaces. The value lc[i][j] indicates cost of putting words from
    // word number i to j in a single line
    for (i = 1; i <= n; i++)
    {
        for (j = i; j <= n; j++)
        {
            if (extras[i][j] < 0)
                lc[i][j] = INF;
            else if (j == n && extras[i][j] >= 0)
                lc[i][j] = 0;
            else
                lc[i][j] = extras[i][j]*extras[i][j];
        }
    }
 
    // Calculate minimum cost and find minimum cost arrangement.
    //  The value c[j] indicates optimized cost to arrange words
    // from word number 1 to j.
    c[0] = 0;
    for (j = 1; j <= n; j++)
    {
        c[j] = INF;
        for (i = 1; i <= j; i++)
        {
            if (c[i-1] != INF && lc[i][j] != INF &&
               (c[i-1] + lc[i][j] < c[j]))
            {
                c[j] = c[i-1] + lc[i][j];
                p[j] = i;
            }
        }
    }
 
    printSolution(p, n);
}
 
int printSolution (int p[], int n)
{
    int k;
    if (p[n] == 1)
        k = 1;
    else
        k = printSolution (p, p[n]-1) + 1;
    printf ("Line number %d: From word no. %d to %d \n", k, p[n], n);
    return k;
}
 
// Driver program to test above functions
int main()
{
    int l[] = {3, 2, 2, 5};
    int n = sizeof(l)/sizeof(l[0]);
    int M = 6;
    solveWordWrap (l, n, M);
    return 0;
}


Java
// A Dynamic programming solution for
// Word Wrap Problem in Java
public class WordWrap
{
 
    final int MAX = Integer.MAX_VALUE;
     
    // A utility function to print the solution
    int printSolution (int p[], int n)
    {
        int k;
        if (p[n] == 1)
        k = 1;
        else
        k = printSolution (p, p[n]-1) + 1;
        System.out.println("Line number" + " " + k + ": " +
                    "From word no." +" "+ p[n] + " " + "to" + " " + n);
        return k;
    }
 
// l[] represents lengths of different words in input sequence.
// For example, l[] = {3, 2, 2, 5} is for a sentence like
// "aaa bb cc ddddd". n is size of l[] and M is line width
// (maximum no. of characters that can fit in a line)
    void solveWordWrap (int l[], int n, int M)
    {
        // For simplicity, 1 extra space is used in all below arrays
     
        // extras[i][j] will have number of extra spaces if words from i
        // to j are put in a single line
        int extras[][] = new int[n+1][n+1];
     
        // lc[i][j] will have cost of a line which has words from
        // i to j
        int lc[][]= new int[n+1][n+1];
     
        // c[i] will have total cost of optimal arrangement of words
        // from 1 to i
        int c[] = new int[n+1];
     
        // p[] is used to print the solution.
        int p[] =new int[n+1];
     
        // calculate extra spaces in a single line. The value extra[i][j]
        // indicates extra spaces if words from word number i to j are
        // placed in a single line
        for (int i = 1; i <= n; i++)
        {
            extras[i][i] = M - l[i-1];
            for (int j = i+1; j <= n; j++)
            extras[i][j] = extras[i][j-1] - l[j-1] - 1;
        }
         
        // Calculate line cost corresponding to the above calculated extra
        // spaces. The value lc[i][j] indicates cost of putting words from
        // word number i to j in a single line
        for (int i = 1; i <= n; i++)
        {
            for (int j = i; j <= n; j++)
            {
                if (extras[i][j] < 0)
                    lc[i][j] = MAX;
                else if (j == n && extras[i][j] >= 0)
                    lc[i][j] = 0;
                else
                    lc[i][j] = extras[i][j]*extras[i][j];
            }
        }
         
        // Calculate minimum cost and find minimum cost arrangement.
        // The value c[j] indicates optimized cost to arrange words
        // from word number 1 to j.
        c[0] = 0;
        for (int j = 1; j <= n; j++)
        {
            c[j] = MAX;
            for (int i = 1; i <= j; i++)
            {
                if (c[i-1] != MAX && lc[i][j] != MAX &&
                   (c[i-1] + lc[i][j] < c[j]))
                {
                    c[j] = c[i-1] + lc[i][j];
                    p[j] = i;
                }
            }
        }
     
        printSolution(p, n);
    }
 
    public static void main(String args[])
    {
        WordWrap w = new WordWrap();
        int l[] = {3, 2, 2, 5};
        int n = l.length;
        int M = 6;
        w.solveWordWrap (l, n, M);
    }
}
 
// This code is contributed by Saket Kumar


Python3
# A Dynamic programming solution
# for Word Wrap Problem
 
# A utility function to print
# the solution
# l[] represents lengths of different
# words in input sequence. For example,
# l[] = {3, 2, 2, 5} is for a sentence
# like "aaa bb cc ddddd". n is size of
# l[] and M is line width (maximum no.
# of characters that can fit in a line)
INF = 2147483647
def printSolution(p, n):
    k = 0
    if p[n] == 1:
        k = 1
    else:
        k = printSolution(p, p[n] - 1) + 1
    print('Line number ', k, ': From word no. ',
                                 p[n], 'to ', n)
    return k
 
def solveWordWrap (l, n, M):
     
    # For simplicity, 1 extra space is
    # used in all below arrays
 
    # extras[i][j] will have number
    # of extra spaces if words from i
    # to j are put in a single line
    extras = [[0 for i in range(n + 1)]
                 for i in range(n + 1)]
                  
    # lc[i][j] will have cost of a line
    # which has words from i to j
    lc = [[0 for i in range(n + 1)]
             for i in range(n + 1)]
              
    # c[i] will have total cost of
    # optimal arrangement of words
    # from 1 to i
    c = [0 for i in range(n + 1)]
     
    # p[] is used to print the solution.
    p = [0 for i in range(n + 1)]
     
    # calculate extra spaces in a single
    # line. The value extra[i][j] indicates
    # extra spaces if words from word number
    # i to j are placed in a single line
    for i in range(n + 1):
        extras[i][i] = M - l[i - 1]
        for j in range(i + 1, n + 1):
            extras[i][j] = (extras[i][j - 1] -
                                    l[j - 1] - 1)
                                     
    # Calculate line cost corresponding
    # to the above calculated extra
    # spaces. The value lc[i][j] indicates
    # cost of putting words from word number
    # i to j in a single line
    for i in range(n + 1):
        for j in range(i, n + 1):
            if extras[i][j] < 0:
                lc[i][j] = INF;
            elif j == n and extras[i][j] >= 0:
                lc[i][j] = 0
            else:
                lc[i][j] = (extras[i][j] *
                            extras[i][j])
 
    # Calculate minimum cost and find
    # minimum cost arrangement. The value
    # c[j] indicates optimized cost to
    # arrange words from word number 1 to j.
    c[0] = 0
    for j in range(1, n + 1):
        c[j] = INF
        for i in range(1, j + 1):
            if (c[i - 1] != INF and
                lc[i][j] != INF and
                ((c[i - 1] + lc[i][j]) < c[j])):
                c[j] = c[i-1] + lc[i][j]
                p[j] = i
    printSolution(p, n)
     
# Driver Code
l = [3, 2, 2, 5]
n = len(l)
M = 6
solveWordWrap(l, n, M)
 
# This code is contributed by sahil shelangia


C#
// A Dynamic programming solution for Word Wrap
// Problem in Java
using System;
 
public class GFG {
 
    static int MAX = int.MaxValue;
     
    // A utility function to print the solution
    static int printSolution (int []p, int n)
    {
        int k;
         
        if (p[n] == 1)
            k = 1;
        else
            k = printSolution (p, p[n]-1) + 1;
             
        Console.WriteLine("Line number" + " "
                + k + ": From word no." + " "
                + p[n] + " " + "to" + " " + n);
        return k;
    }
 
    // l[] represents lengths of different
    // words in input sequence. For example,
    // l[] = {3, 2, 2, 5} is for a sentence
    // like "aaa bb cc ddddd". n is size of
    // l[] and M is line width (maximum no.
    // of characters that can fit in a line)
    static void solveWordWrap (int []l, int n,
                                        int M)
    {
         
        // For simplicity, 1 extra space
        // is used in all below arrays
     
        // extras[i][j] will have number of
        // extra spaces if words from i
        // to j are put in a single line
        int [,]extras = new int[n+1,n+1];
     
        // lc[i][j] will have cost of a line
        // which has words from i to j
        int [,]lc = new int[n+1,n+1];
     
        // c[i] will have total cost of
        // optimal arrangement of words
        // from 1 to i
        int []c = new int[n+1];
     
        // p[] is used to print the solution.
        int []p = new int[n+1];
     
        // calculate extra spaces in a single
        // line. The value extra[i][j] indicates
        // extra spaces if words from word number
        // i to j are placed in a single line
        for (int i = 1; i <= n; i++)
        {
            extras[i,i] = M - l[i-1];
             
            for (int j = i+1; j <= n; j++)
                extras[i,j] = extras[i,j-1]
                                 - l[j-1] - 1;
        }
         
        // Calculate line cost corresponding to
        // the above calculated extra spaces. The
        // value lc[i][j] indicates cost of
        // putting words from word number i to
        // j in a single line
        for (int i = 1; i <= n; i++)
        {
            for (int j = i; j <= n; j++)
            {
                if (extras[i,j] < 0)
                    lc[i,j] = MAX;
                else if (j == n &&
                              extras[i,j] >= 0)
                    lc[i,j] = 0;
                else
                    lc[i,j] = extras[i,j]
                                 * extras[i,j];
            }
        }
         
        // Calculate minimum cost and find
        // minimum cost arrangement. The value
        // c[j] indicates optimized cost to
        // arrange words from word number
        // 1 to j.
        c[0] = 0;
        for (int j = 1; j <= n; j++)
        {
            c[j] = MAX;
            for (int i = 1; i <= j; i++)
            {
                if (c[i-1] != MAX && lc[i,j]
                    != MAX && (c[i-1] + lc[i,j]
                                       < c[j]))
                {
                    c[j] = c[i-1] + lc[i,j];
                    p[j] = i;
                }
            }
        }
     
        printSolution(p, n);
    }
 
    // Driver code
    public static void Main()
    {
        int []l = {3, 2, 2, 5};
        int n = l.Length;
        int M = 6;
        solveWordWrap (l, n, M);
    }
}
 
// This code is contributed by nitin mittal.


Javascript


输出:

Line number 1: From word no. 1 to 1
Line number 2: From word no. 2 to 3
Line number 3: From word no. 4 to 4 

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程