📜  游戏的最优策略| DP-31

📅  最后修改于: 2021-09-24 05:00:37             🧑  作者: Mango

考虑一排 n 个硬币,价值为 v1 。 . . vn,其中 n 是偶数。我们通过交替轮流与对手进行游戏。在每一轮中,玩家从该行中选择第一个或最后一个硬币,将其从该行中永久移除,并获得该硬币的价值。确定如果我们先行动,我们肯定能赢得的最大可能金额。
注意:对手和使用者一样聪明。

让我们通过几个例子来理解这个问题:

  1. 5, 3, 7, 10 : 用户收集最大值为 15(10 + 5)
  2. 8, 15, 3, 7 : 用户收集最大值为 22(7 + 15)

在每次移动中选择最好的是否会给出最佳解决方案?不。
在第二个例子中,这是如何完成游戏的:

  1. …….用户选择8。
    …….对手选择15。
    …….用户选择7。
    …….对手选择3。
    用户收集的总价值为 15(8 + 7)
  2. …….用户选择7。
    …….对手选择8。
    …….用户选择15。
    …….对手选择3。
    用户收集的总价值为 22(7 + 15)

因此,如果用户遵循第二个游戏状态,尽管第一个动作不是最好的,但可以收集最大值。

做法:由于双方实力相当,双方都会尽量降低对方获胜的可能性。现在让我们看看对手是如何做到这一点的。

有两种选择:

  • 用户选择价值为“Vi”的“第 i 个”硬币:对手选择第 (i+1) 个硬币或第 j 个硬币。对手打算选择给用户留下最小价值的硬币。
    即用户可以收集值Vi + min(F(i+2, j), F(i+1, j-1) )

硬币游戏1

  • 用户选择价值为“Vj”的“第j个”硬币:对手选择“第i个”硬币或“第(j-1)个”硬币。对手打算选择给用户留下最小价值的硬币,即用户可以收集价值Vj + min(F(i+1, j-1), F(i, j-2) )

硬币游戏2

以下是基于上述两种选择的递归解决方案。我们最多有两个选择。

F(i, j) represents the maximum value the user
can collect from i'th coin to j'th coin.

F(i, j) = Max(Vi + min(F(i+2, j), F(i+1, j-1) ), 
              Vj + min(F(i+1, j-1), F(i, j-2) ))
As user wants to maximise the number of coins. 

Base Cases
    F(i, j) = Vi           If j == i
    F(i, j) = max(Vi, Vj)  If j == i + 1
C++
// C++ program to find out
// maximum value from a given
// sequence of coins
#include 
using namespace std;
 
// Returns optimal value possible
// that a player can collect from
// an array of coins of size n.
// Note than n must be even
int optimalStrategyOfGame(
    int* arr, int n)
{
    // Create a table to store
    // solutions of subproblems
    int table[n][n];
 
    // Fill table using above
    // recursive formula. Note
    // that the table is filled
    // in diagonal fashion (similar
    // to http:// goo.gl/PQqoS),
    // from diagonal elements to
    // table[0][n-1] which is the result.
    for (int gap = 0; gap < n; ++gap) {
        for (int i = 0, j = gap; j < n; ++i, ++j) {
            // Here x is value of F(i+2, j),
            // y is F(i+1, j-1) and
            // z is F(i, j-2) in above recursive
            // formula
            int x = ((i + 2) <= j)
                        ? table[i + 2][j]
                        : 0;
            int y = ((i + 1) <= (j - 1))
                        ? table[i + 1][j - 1]
                        : 0;
            int z = (i <= (j - 2))
                        ? table[i][j - 2]
                        : 0;
 
            table[i][j] = max(
                arr[i] + min(x, y),
                arr[j] + min(y, z));
        }
    }
 
    return table[0][n - 1];
}
 
// Driver program to test above function
int main()
{
    int arr1[] = { 8, 15, 3, 7 };
    int n = sizeof(arr1) / sizeof(arr1[0]);
    printf("%d\n",
           optimalStrategyOfGame(arr1, n));
 
    int arr2[] = { 2, 2, 2, 2 };
    n = sizeof(arr2) / sizeof(arr2[0]);
    printf("%d\n",
           optimalStrategyOfGame(arr2, n));
 
    int arr3[] = { 20, 30, 2, 2, 2, 10 };
    n = sizeof(arr3) / sizeof(arr3[0]);
    printf("%d\n",
           optimalStrategyOfGame(arr3, n));
 
    return 0;
}


Java
// Java program to find out maximum
// value from a given sequence of coins
import java.io.*;
 
class GFG {
 
    // Returns optimal value possible
    // that a player can collect from
    // an array of coins of size n.
    // Note than n must be even
    static int optimalStrategyOfGame(
        int arr[], int n)
    {
        // Create a table to store
        // solutions of subproblems
        int table[][] = new int[n][n];
        int gap, i, j, x, y, z;
 
        // Fill table using above recursive formula.
        // Note that the tableis filled in diagonal
        // fashion (similar to http:// goo.gl/PQqoS),
        // from diagonal elements to table[0][n-1]
        // which is the result.
        for (gap = 0; gap < n; ++gap) {
            for (i = 0, j = gap; j < n; ++i, ++j) {
 
                // Here x is value of F(i+2, j),
                // y is F(i+1, j-1) and z is
                // F(i, j-2) in above recursive formula
                x = ((i + 2) <= j)
                        ? table[i + 2][j]
                        : 0;
                y = ((i + 1) <= (j - 1))
                        ? table[i + 1][j - 1]
                        : 0;
                z = (i <= (j - 2))
                        ? table[i][j - 2]
                        : 0;
 
                table[i][j] = Math.max(
                    arr[i] + Math.min(x, y),
                    arr[j] + Math.min(y, z));
            }
        }
 
        return table[0][n - 1];
    }
 
    // Driver program
    public static void main(String[] args)
    {
        int arr1[] = { 8, 15, 3, 7 };
        int n = arr1.length;
        System.out.println(
            ""
            + optimalStrategyOfGame(arr1, n));
 
        int arr2[] = { 2, 2, 2, 2 };
        n = arr2.length;
        System.out.println(
            ""
            + optimalStrategyOfGame(arr2, n));
 
        int arr3[] = { 20, 30, 2, 2, 2, 10 };
        n = arr3.length;
        System.out.println(
            ""
            + optimalStrategyOfGame(arr3, n));
    }
}
 
// This code is contributed by vt_m


Python3
# Python3 program to find out maximum
# value from a given sequence of coins
 
# Returns optimal value possible that
# a player can collect from an array
# of coins of size n. Note than n
# must be even
def optimalStrategyOfGame(arr, n):
     
    # Create a table to store
    # solutions of subproblems
    table = [[0 for i in range(n)]
                for i in range(n)]
 
    # Fill table using above recursive
    # formula. Note that the table is
    # filled in diagonal fashion
    # (similar to http://goo.gl / PQqoS),
    # from diagonal elements to
    # table[0][n-1] which is the result.
    for gap in range(n):
        for j in range(gap, n):
            i = j - gap
             
            # Here x is value of F(i + 2, j),
            # y is F(i + 1, j-1) and z is
            # F(i, j-2) in above recursive
            # formula
            x = 0
            if((i + 2) <= j):
                x = table[i + 2][j]
            y = 0
            if((i + 1) <= (j - 1)):
                y = table[i + 1][j - 1]
            z = 0
            if(i <= (j - 2)):
                z = table[i][j - 2]
            table[i][j] = max(arr[i] + min(x, y),
                              arr[j] + min(y, z))
    return table[0][n - 1]
 
# Driver Code
arr1 = [ 8, 15, 3, 7 ]
n = len(arr1)
print(optimalStrategyOfGame(arr1, n))
 
arr2 = [ 2, 2, 2, 2 ]
n = len(arr2)
print(optimalStrategyOfGame(arr2, n))
 
arr3 = [ 20, 30, 2, 2, 2, 10]
n = len(arr3)
print(optimalStrategyOfGame(arr3, n))
 
# This code is contributed
# by sahilshelangia


C#
// C# program to find out maximum
// value from a given sequence of coins
using System;
 
public class GFG {
 
    // Returns optimal value possible that a player
    // can collect from an array of coins of size n.
    // Note than n must be even
    static int optimalStrategyOfGame(int[] arr, int n)
    {
        // Create a table to store solutions of subproblems
        int[, ] table = new int[n, n];
        int gap, i, j, x, y, z;
 
        // Fill table using above recursive formula.
        // Note that the tableis filled in diagonal
        // fashion (similar to http:// goo.gl/PQqoS),
        // from diagonal elements to table[0][n-1]
        // which is the result.
        for (gap = 0; gap < n; ++gap) {
            for (i = 0, j = gap; j < n; ++i, ++j) {
 
                // Here x is value of F(i+2, j),
                // y is F(i+1, j-1) and z is
                // F(i, j-2) in above recursive formula
                x = ((i + 2) <= j) ? table[i + 2, j] : 0;
                y = ((i + 1) <= (j - 1)) ? table[i + 1, j - 1] : 0;
                z = (i <= (j - 2)) ? table[i, j - 2] : 0;
 
                table[i, j] = Math.Max(arr[i] + Math.Min(x, y),
                                       arr[j] + Math.Min(y, z));
            }
        }
 
        return table[0, n - 1];
    }
 
    // Driver program
 
    static public void Main()
    {
        int[] arr1 = { 8, 15, 3, 7 };
        int n = arr1.Length;
        Console.WriteLine("" + optimalStrategyOfGame(arr1, n));
 
        int[] arr2 = { 2, 2, 2, 2 };
        n = arr2.Length;
        Console.WriteLine("" + optimalStrategyOfGame(arr2, n));
 
        int[] arr3 = { 20, 30, 2, 2, 2, 10 };
        n = arr3.Length;
        Console.WriteLine("" + optimalStrategyOfGame(arr3, n));
    }
}
 
// This code is contributed by ajit


PHP


Javascript


输出:

22
4
42

复杂度分析:

  • 时间复杂度: O(n 2 )。
    使用嵌套的 for 循环会使时间复杂度达到 n 2
  • 辅助空间: O(n 2 )。
    由于二维表用于存储状态。

注意:可以通过对每个选择使用较少数量的比较来优化上述解决方案。请参考以下。  
游戏的最优策略| 2套

如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程学生竞争性编程现场课程