📅  最后修改于: 2020-10-27 04:13:54             🧑  作者: Mango
输入数组的副本实际上存储在其他某个位置,并且返回存储在该特定位置的内容,它是输入数组的副本,而在视图的情况下,返回同一存储位置的不同视图。
在本教程的这一部分中,我们将考虑从某个内存位置生成不同副本和视图的方式。
将numpy数组分配给另一个数组不会直接复制原始数组,而是使另一个数组具有相同的内容和相同的ID。它表示对原始数组的引用。在此引用上所做的更改也会反映在原始数组中。
id()函数返回数组的通用标识符,类似于C中的指针。
考虑以下示例。
import numpy as np
a = np.array([[1,2,3,4],[9,0,2,3],[1,2,3,19]])
print("Original Array:\n",a)
print("\nID of array a:",id(a))
b = a
print("\nmaking copy of the array a")
print("\nID of b:",id(b))
b.shape = 4,3;
print("\nChanges on b also reflect to a:")
print(a)
输出:
Original Array:
[[ 1 2 3 4]
[ 9 0 2 3]
[ 1 2 3 19]]
ID of array a: 139663602288640
making copy of the array a
ID of b: 139663602288640
Changes on b also reflect to a:
[[ 1 2 3]
[ 4 9 0]
[ 2 3 1]
[ 2 3 19]]
ndarray.view()方法返回新数组对象,该对象包含与原始数组相同的内容。由于它是一个新的数组对象,因此对该对象所做的更改不会反映原始数组。
考虑以下示例。
import numpy as np
a = np.array([[1,2,3,4],[9,0,2,3],[1,2,3,19]])
print("Original Array:\n",a)
print("\nID of array a:",id(a))
b = a.view()
print("\nID of b:",id(b))
print("\nprinting the view b")
print(b)
b.shape = 4,3;
print("\nChanges made to the view b do not reflect a")
print("\nOriginal array \n",a)
print("\nview\n",b)
输出:
Original Array:
[[ 1 2 3 4]
[ 9 0 2 3]
[ 1 2 3 19]]
ID of array a: 140280414447456
ID of b: 140280287000656
printing the view b
[[ 1 2 3 4]
[ 9 0 2 3]
[ 1 2 3 19]]
Changes made to the view b do not reflect a
Original array
[[ 1 2 3 4]
[ 9 0 2 3]
[ 1 2 3 19]]
view
[[ 1 2 3]
[ 4 9 0]
[ 2 3 1]
[ 2 3 19]]
它返回原始数组的深层副本,该副本与原始数组不共享任何内存。对原始数组的深层副本所做的修改不会反映原始数组。
考虑以下示例。
import numpy as np
a = np.array([[1,2,3,4],[9,0,2,3],[1,2,3,19]])
print("Original Array:\n",a)
print("\nID of array a:",id(a))
b = a.copy()
print("\nID of b:",id(b))
print("\nprinting the deep copy b")
print(b)
b.shape = 4,3;
print("\nChanges made to the copy b do not reflect a")
print("\nOriginal array \n",a)
print("\nCopy\n",b)
输出:
Original Array:
[[ 1 2 3 4]
[ 9 0 2 3]
[ 1 2 3 19]]
ID of array a: 139895697586176
ID of b: 139895570139296
printing the deep copy b
[[ 1 2 3 4]
[ 9 0 2 3]
[ 1 2 3 19]]
Changes made to the copy b do not reflect a
Original array
[[ 1 2 3 4]
[ 9 0 2 3]
[ 1 2 3 19]]
Copy
[[ 1 2 3]
[ 4 9 0]
[ 2 3 1]
[ 2 3 19]]