📅  最后修改于: 2020-11-06 05:48:35             🧑  作者: Mango
Pandas提供了各种功能,可以轻松地将Series,DataFrame和Panel对象组合在一起。
pd.concat(objs,axis=0,join='outer',join_axes=None,
ignore_index=False)
的OBJ -这是系列的序列或映射,数据帧,或面板对象。
axis- {0,1,…},默认为0。这是要串联的轴。
join -{‘inner’,’outer’},默认为’outer’。如何处理其他轴上的索引。外部为联合,内部为交叉。
ignore_index-布尔值,默认为False。如果为True,则不要在串联轴上使用索引值。结果轴将标记为0,…,n-1。
join_axes-这是索引对象的列表。用于其他(n-1)轴的特定索引,而不是执行内部/外部设置逻辑。
concat函数完成了沿轴执行串联操作的所有繁重工作。让我们创建不同的对象并进行串联。
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print pd.concat([one,two])
其输出如下-
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
假设我们想将特定的键与切碎的DataFrame的每个片段相关联。我们可以通过使用keys参数来做到这一点-
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print pd.concat([one,two],keys=['x','y'])
其输出如下-
x 1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
y 1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
结果的索引是重复的;每个索引重复。
如果结果对象必须遵循其自己的索引,则将ignore_index设置为True 。
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print pd.concat([one,two],keys=['x','y'],ignore_index=True)
其输出如下-
Marks_scored Name subject_id
0 98 Alex sub1
1 90 Amy sub2
2 87 Allen sub4
3 69 Alice sub6
4 78 Ayoung sub5
5 89 Billy sub2
6 80 Brian sub4
7 79 Bran sub3
8 97 Bryce sub6
9 88 Betty sub5
注意,索引完全更改,并且键也被覆盖。
如果需要沿axis = 1添加两个对象,则将添加新列。
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print pd.concat([one,two],axis=1)
其输出如下-
Marks_scored Name subject_id Marks_scored Name subject_id
1 98 Alex sub1 89 Billy sub2
2 90 Amy sub2 80 Brian sub4
3 87 Allen sub4 79 Bran sub3
4 69 Alice sub6 97 Bryce sub6
5 78 Ayoung sub5 88 Betty sub5
Concat有用的快捷方式是Series和DataFrame上的append实例方法。这些方法实际上早于concat。它们沿着轴= 0连接,即索引-
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print one.append(two)
其输出如下-
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
append函数也可以接受多个对象-
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print one.append([two,one,two])
其输出如下-
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
熊猫提供了一个强大的工具来处理时间序列数据,特别是在金融领域。在处理时间序列数据时,我们经常遇到以下情况-
熊猫提供了一套相对紧凑和独立的工具来执行上述任务。
datetime.now()为您提供当前日期和时间。
import pandas as pd
print pd.datetime.now()
其输出如下-
2017-05-11 06:10:13.393147
时间戳数据是将值与时间点相关联的时间序列数据的最基本类型。对于熊猫对象,这意味着使用时间点。让我们举个例子-
import pandas as pd
print pd.Timestamp('2017-03-01')
其输出如下-
2017-03-01 00:00:00
也可以转换整数或浮点时间。这些的默认单位是纳秒(因为这是时间戳的存储方式)。但是,通常将纪元存储在可以指定的另一个单元中。再举一个例子
import pandas as pd
print pd.Timestamp(1587687255,unit='s')
其输出如下-
2020-04-24 00:14:15
import pandas as pd
print pd.date_range("11:00", "13:30", freq="30min").time
其输出如下-
[datetime.time(11, 0) datetime.time(11, 30) datetime.time(12, 0)
datetime.time(12, 30) datetime.time(13, 0) datetime.time(13, 30)]
import pandas as pd
print pd.date_range("11:00", "13:30", freq="H").time
其输出如下-
[datetime.time(11, 0) datetime.time(12, 0) datetime.time(13, 0)]
要转换类似日期的对象的系列或类似列表的对象,例如字符串,纪元或混合对象,可以使用to_datetime函数。传递时,将返回一个Series(具有相同的索引),而类似列表的列表将转换为DatetimeIndex 。看下面的例子-
import pandas as pd
print pd.to_datetime(pd.Series(['Jul 31, 2009','2010-01-10', None]))
其输出如下-
0 2009-07-31
1 2010-01-10
2 NaT
dtype: datetime64[ns]
NaT表示不是时间(相当于NaN)
让我们再举一个例子。
import pandas as pd
print pd.to_datetime(['2005/11/23', '2010.12.31', None])
其输出如下-
DatetimeIndex(['2005-11-23', '2010-12-31', 'NaT'], dtype='datetime64[ns]', freq=None)