Python – tensorflow.math.divide_no_nan()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
divide_no_nan()用于计算 x 除以 y 的元素安全除法,即如果 y 为零则返回 0
Syntax: tensorflow.math.divide_no_nan( x, y, name)
Parameters:
- x: It is a tensor.
- y: It is a tensor.
- name(optional): It defines the name of the operation
Returns: It returns a tensor.
示例 1:
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([6, 8, 12, 15], dtype = tf.float64)
b = tf.constant([2, 3, 4, 5], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
print('b: ', b)
# Calculating safe division
res = tf.math.divide_no_nan(x = a, y = b)
# Printing the result
print('Result: ', res)
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([6, 8, 12, 15], dtype = tf.float64)
b = tf.constant([2, 3, 4, 0], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
print('b: ', b)
# Calculating safe division
res = tf.math.divide_no_nan(x = a, y = b)
# Printing the result
print('Result: ', res)
输出:
a: tf.Tensor([ 6. 8. 12. 15.], shape=(4, ), dtype=float64)
b: tf.Tensor([2. 3. 4. 5.], shape=(4, ), dtype=float64)
Result: tf.Tensor([3. 2.66666667 3. 3. ], shape=(4, ), dtype=float64)
示例 2:在此示例中,第二张量中的值之一取 0。
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([6, 8, 12, 15], dtype = tf.float64)
b = tf.constant([2, 3, 4, 0], dtype = tf.float64)
# Printing the input tensor
print('a: ', a)
print('b: ', b)
# Calculating safe division
res = tf.math.divide_no_nan(x = a, y = b)
# Printing the result
print('Result: ', res)
输出:
a: tf.Tensor([ 6. 8. 12. 15.], shape=(4, ), dtype=float64)
b: tf.Tensor([2. 3. 4. 0.], shape=(4, ), dtype=float64)
Result: tf.Tensor([3. 2.66666667 3. 0], shape=(4, ), dtype=float64)