📜  在 Plotly 中更改标记边框颜色 – Python

📅  最后修改于: 2022-05-13 01:55:29.296000             🧑  作者: Mango

在 Plotly 中更改标记边框颜色 – Python

在本文中,我们将讨论如何使用Python中的plotly模块更改标记边框颜色。

Plotly绝对是可视化的必备工具,因为它非常强大,易于使用,并且具有交互性的巨大优势,我们能够导出可视化,能够在浏览器上运行,使用 DASH 构建,DASH 是基于 Web 的Python界面,它消除了在这种类型的分析 Web 应用程序中需要 javascript,我们也可以离线运行这些绘图。在本文中,我们将使用plotly 的模块 plotly.express 它是高级Python可视化库,它向复杂图表公开简单的语法,它是 plotly.py 的包装器。

安装:

可以使用以下命令安装此模块:

pip install plotly

在本文中,我们将借助plotly.express.scatter.update_traces()plotly.express.scatter_3d.update_traces()()方法更改 maker 边框颜色。

循序渐进的方法:

  • 导入plotlypandas库。
  • 首先,我们必须在pandas库的帮助下加载我们要在其上绘制图形的数据集。
  • 为了绘制图形,我们将使用plotly.scatter()作为散点图并将其放入变量 let name 中
  • 然后我们使用具有标记属性的fig.update_traces函数,我们可以从中更改标记的边框。

我们将在各种示例中使用以下iris数据集:

Python3
# importing library
import plotly.express as px
  
# importing iris dataset from plotly
df = px.data.iris()
  
# display dataset
df


Python
# importing library
import plotly.express as px
  
# importing iris dataset from plotly
df = px.data.iris()
  
# plotting the scatter plot on sepal_width 
# and sepal_length and giving color with 
# respect to species
fig = px.scatter(df, x='sepal_width', 
                 y='sepal_length', 
                 color='species')
  
# showing the plot with default settings
fig.show()


Python
# importing library
import plotly.express as px
  
# importing iris dataset from plotly
df = px.data.iris()
  
# plotting the scatter plot on sepal_width
# and sepal_length and giving color 
# with respect to species
fig = px.scatter(df, x='sepal_width', 
                 y='sepal_length', 
                 color='species')
  
# setting up marker and in line 
# Attribute giving the width and color of border
fig.update_traces(marker=dict(size=10, 
                              line=dict(width=3,
                                        color='blue')))
  
# showing the plot with default settings
fig.show()


Python
# importing library
import plotly.express as px
  
# importing iris dataset from plotly
df = px.data.iris()
  
# plotting the scatter 3d plot by giving 
# three axis, petal length, petal width 
# and sepal length 
# giving color with respect to species
fig = px.scatter_3d(df,x='petal_length',
                    y='petal_width',
                    z='sepal_length',
                    color='species')
  
# showing the plot with default settings
fig.show()


Python
# importing library
import plotly.express as px
  
# importing iris dataset from plotly
df = px.data.iris()
  
# plotting the scatter_3d plot by 
# giving three axis on petal_length, 
# petal_width and sepal_length  
# and giving color with respect to species
fig = px.scatter_3d(df,x='petal_length',
                    y='petal_width',
                    z='sepal_length',
                    color='species')
  
# setting up marker and in line Attribute 
# giving the width and color of border
fig.update_traces(marker=dict(size=10,
                              line=dict(width=10,
                                        color='red')))
  
# showing the plot 
fig.show()


输出:

示例 1:iris数据集上绘制默认散点图。

Python

# importing library
import plotly.express as px
  
# importing iris dataset from plotly
df = px.data.iris()
  
# plotting the scatter plot on sepal_width 
# and sepal_length and giving color with 
# respect to species
fig = px.scatter(df, x='sepal_width', 
                 y='sepal_length', 
                 color='species')
  
# showing the plot with default settings
fig.show()

输出:

在 iris 数据集上绘制散点图并更改标记边框颜色。

Python

# importing library
import plotly.express as px
  
# importing iris dataset from plotly
df = px.data.iris()
  
# plotting the scatter plot on sepal_width
# and sepal_length and giving color 
# with respect to species
fig = px.scatter(df, x='sepal_width', 
                 y='sepal_length', 
                 color='species')
  
# setting up marker and in line 
# Attribute giving the width and color of border
fig.update_traces(marker=dict(size=10, 
                              line=dict(width=3,
                                        color='blue')))
  
# showing the plot with default settings
fig.show()

输出:

在上面的代码中,我们使用了update_traces()函数,因为我们在该属性中指定了标记属性来创建边界,我们传递了字典,其中传递了 size=10 来为圆圈提供大小,而在行中我们传递了字典,其中传递了宽度和颜色,宽度是指边框的宽度,颜色是指边框的颜色。

示例 3:iris数据集上绘制默认的 scatter_3d图。

Python

# importing library
import plotly.express as px
  
# importing iris dataset from plotly
df = px.data.iris()
  
# plotting the scatter 3d plot by giving 
# three axis, petal length, petal width 
# and sepal length 
# giving color with respect to species
fig = px.scatter_3d(df,x='petal_length',
                    y='petal_width',
                    z='sepal_length',
                    color='species')
  
# showing the plot with default settings
fig.show()

输出:

示例 4:在带有标记边框颜色的 iris 数据集上绘制 scatter_3d 图。

Python

# importing library
import plotly.express as px
  
# importing iris dataset from plotly
df = px.data.iris()
  
# plotting the scatter_3d plot by 
# giving three axis on petal_length, 
# petal_width and sepal_length  
# and giving color with respect to species
fig = px.scatter_3d(df,x='petal_length',
                    y='petal_width',
                    z='sepal_length',
                    color='species')
  
# setting up marker and in line Attribute 
# giving the width and color of border
fig.update_traces(marker=dict(size=10,
                              line=dict(width=10,
                                        color='red')))
  
# showing the plot 
fig.show()

输出: