📅  最后修改于: 2020-11-30 04:56:04             🧑  作者: Mango
JOIN是一个子句,用于通过使用每个表的公共值来组合两个表中的特定字段。它用于合并数据库中两个或多个表中的记录。
join_table:
table_reference JOIN table_factor [join_condition]
| table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference
join_condition
| table_reference LEFT SEMI JOIN table_reference join_condition
| table_reference CROSS JOIN table_reference [join_condition]
在本章中,我们将使用以下两个表。请考虑下表CUSTOMERS。
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |
| 2 | Khilan | 25 | Delhi | 1500.00 |
| 3 | kaushik | 23 | Kota | 2000.00 |
| 4 | Chaitali | 25 | Mumbai | 6500.00 |
| 5 | Hardik | 27 | Bhopal | 8500.00 |
| 6 | Komal | 22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
+----+----------+-----+-----------+----------+
考虑另一个表ORDERS,如下所示:
+-----+---------------------+-------------+--------+
|OID | DATE | CUSTOMER_ID | AMOUNT |
+-----+---------------------+-------------+--------+
| 102 | 2009-10-08 00:00:00 | 3 | 3000 |
| 100 | 2009-10-08 00:00:00 | 3 | 1500 |
| 101 | 2009-11-20 00:00:00 | 2 | 1560 |
| 103 | 2008-05-20 00:00:00 | 4 | 2060 |
+-----+---------------------+-------------+--------+
给出了不同类型的联接,如下所示:
JOIN子句用于合并和检索来自多个表的记录。 JOIN与SQL中的OUTER JOIN相同。将使用表的主键和外键引发JOIN条件。
以下查询在CUSTOMER和ORDER表上执行JOIN,并检索记录:
hive> SELECT c.ID, c.NAME, c.AGE, o.AMOUNT
FROM CUSTOMERS c JOIN ORDERS o
ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:
+----+----------+-----+--------+
| ID | NAME | AGE | AMOUNT |
+----+----------+-----+--------+
| 3 | kaushik | 23 | 3000 |
| 3 | kaushik | 23 | 1500 |
| 2 | Khilan | 25 | 1560 |
| 4 | Chaitali | 25 | 2060 |
+----+----------+-----+--------+
HiveQL LEFT OUTER JOIN返回左表中的所有行,即使右表中没有匹配项也是如此。这意味着,如果ON子句与右表中的0(零)条记录匹配,则JOIN仍返回结果中的一行,但右表中的每一列都为NULL。
LEFT JOIN返回左表中的所有值,再加上右表中的匹配值,如果没有匹配的JOIN谓词,则返回NULL。
以下查询演示了CUSTOMER和ORDER表之间的LEFT OUTER JOIN:
hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE
FROM CUSTOMERS c
LEFT OUTER JOIN ORDERS o
ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:
+----+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+----+----------+--------+---------------------+
| 1 | Ramesh | NULL | NULL |
| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |
| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |
| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |
| 5 | Hardik | NULL | NULL |
| 6 | Komal | NULL | NULL |
| 7 | Muffy | NULL | NULL |
+----+----------+--------+---------------------+
HiveQL右外部联接返回右表中的所有行,即使左表中没有匹配项也是如此。如果ON子句与左表中的0(零)记录匹配,则JOIN仍返回结果行,但左表中的每一列都为NULL。
RIGHT JOIN返回右表中的所有值,再加上左表中的匹配值,如果没有匹配的谓词,则返回NULL。
下面的查询演示了CUSTOMER和ORDER表之间的RIGHT OUTER JOIN。
notranslate“> hive>选择c.ID,c.NAME,o.AMOUNT,o.DATE来自客户c右外加入订单o开启(c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:
+------+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+------+----------+--------+---------------------+
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |
| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |
| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |
| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |
+------+----------+--------+---------------------+
HiveQL FULL OUTER JOIN组合了满足JOIN条件的左右外部表的记录。联接的表包含两个表中的所有记录,或为任一侧缺少的匹配项填充NULL值。
以下查询演示了CUSTOMER和ORDER表之间的FULL OUTER JOIN:
hive> SELECT c.ID, c.NAME, o.AMOUNT, o.DATE
FROM CUSTOMERS c
FULL OUTER JOIN ORDERS o
ON (c.ID = o.CUSTOMER_ID);
成功执行查询后,您将看到以下响应:
+------+----------+--------+---------------------+
| ID | NAME | AMOUNT | DATE |
+------+----------+--------+---------------------+
| 1 | Ramesh | NULL | NULL |
| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |
| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |
| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |
| 5 | Hardik | NULL | NULL |
| 6 | Komal | NULL | NULL |
| 7 | Muffy | NULL | NULL |
| 3 | kaushik | 3000 | 2009-10-08 00:00:00 |
| 3 | kaushik | 1500 | 2009-10-08 00:00:00 |
| 2 | Khilan | 1560 | 2009-11-20 00:00:00 |
| 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |
+------+----------+--------+---------------------+