📅  最后修改于: 2020-12-03 03:00:35             🧑  作者: Mango
让我们分析一个实时应用程序,以获取最新的Twitter提要及其标签。之前,我们已经看到了Storm和Spark与Kafka的集成。在这两种情况下,我们都创建了一个Kafka Producer(使用cli)以将消息发送到Kafka生态系统。然后,风暴和火花集成使用Kafka使用者读取消息,并将其分别注入风暴和火花生态系统。因此,实际上我们需要创建一个Kafka生产者,该生产者应-
一旦Kafka收到了HashTag
,Storm / Spark集成就会接收该信息并将其发送到Storm / Spark生态系统。
可以使用任何编程语言来访问“ Twitter流API”。 “ twitter4j”是一个开源的非官方Java库,它提供了一个基于Java的模块,可以轻松访问“ Twitter Streaming API”。 “ twitter4j”提供了一个基于侦听器的框架来访问推文。要访问“ Twitter流API”,我们需要登录Twitter开发人员帐户,并应获得以下OAuth身份验证详细信息。
创建开发人员帐户后,下载“ twitter4j” jar文件并将其放置在java类路径中。
下面列出了完整的Twitter Kafka生产者编码(KafkaTwitterProducer.java)-
import java.util.Arrays;
import java.util.Properties;
import java.util.concurrent.LinkedBlockingQueue;
import twitter4j.*;
import twitter4j.conf.*;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
public class KafkaTwitterProducer {
public static void main(String[] args) throws Exception {
LinkedBlockingQueue queue = new LinkedBlockingQueue(1000);
if(args.length < 5){
System.out.println(
"Usage: KafkaTwitterProducer
");
return;
}
String consumerKey = args[0].toString();
String consumerSecret = args[1].toString();
String accessToken = args[2].toString();
String accessTokenSecret = args[3].toString();
String topicName = args[4].toString();
String[] arguments = args.clone();
String[] keyWords = Arrays.copyOfRange(arguments, 5, arguments.length);
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setDebugEnabled(true)
.setOAuthConsumerKey(consumerKey)
.setOAuthConsumerSecret(consumerSecret)
.setOAuthAccessToken(accessToken)
.setOAuthAccessTokenSecret(accessTokenSecret);
TwitterStream twitterStream = new TwitterStreamFactory(cb.build()).get-Instance();
StatusListener listener = new StatusListener() {
@Override
public void onStatus(Status status) {
queue.offer(status);
// System.out.println("@" + status.getUser().getScreenName()
+ " - " + status.getText());
// System.out.println("@" + status.getUser().getScreen-Name());
/*for(URLEntity urle : status.getURLEntities()) {
System.out.println(urle.getDisplayURL());
}*/
/*for(HashtagEntity hashtage : status.getHashtagEntities()) {
System.out.println(hashtage.getText());
}*/
}
@Override
public void onDeletionNotice(StatusDeletionNotice statusDeletion-Notice) {
// System.out.println("Got a status deletion notice id:"
+ statusDeletionNotice.getStatusId());
}
@Override
public void onTrackLimitationNotice(int numberOfLimitedStatuses) {
// System.out.println("Got track limitation notice:" +
num-berOfLimitedStatuses);
}
@Override
public void onScrubGeo(long userId, long upToStatusId) {
// System.out.println("Got scrub_geo event userId:" + userId +
"upToStatusId:" + upToStatusId);
}
@Override
public void onStallWarning(StallWarning warning) {
// System.out.println("Got stall warning:" + warning);
}
@Override
public void onException(Exception ex) {
ex.printStackTrace();
}
};
twitterStream.addListener(listener);
FilterQuery query = new FilterQuery().track(keyWords);
twitterStream.filter(query);
Thread.sleep(5000);
//Add Kafka producer config settings
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("buffer.memory", 33554432);
props.put("key.serializer",
"org.apache.kafka.common.serializa-tion.StringSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serializa-tion.StringSerializer");
Producer producer = new KafkaProducer(props);
int i = 0;
int j = 0;
while(i < 10) {
Status ret = queue.poll();
if (ret == null) {
Thread.sleep(100);
i++;
}else {
for(HashtagEntity hashtage : ret.getHashtagEntities()) {
System.out.println("Hashtag: " + hashtage.getText());
producer.send(new ProducerRecord(
top-icName, Integer.toString(j++), hashtage.getText()));
}
}
}
producer.close();
Thread.sleep(5000);
twitterStream.shutdown();
}
}
使用以下命令编译应用程序-
javac -cp “/path/to/kafka/libs/*”:”/path/to/twitter4j/lib/*”:. KafkaTwitterProducer.java
打开两个控制台。如下所示在一个控制台中运行上面编译的应用程序。
java -cp “/path/to/kafka/libs/*”:”/path/to/twitter4j/lib/*”:
. KafkaTwitterProducer
my-first-topic food
在另一个窗口中运行上一章中说明的任何一个Spark / Storm应用程序。需要注意的主要一点是,两种情况下使用的主题都应该相同。在这里,我们使用“ my-first-topic”作为主题名称。
该应用程序的输出将取决于关键字和Twitter的当前供稿。下面指定了样本输出(风暴整合)。
. . .
food : 1
foodie : 2
burger : 1
. . .