📌  相关文章
📜  使用超声波传感器HC-SR04和Arduino设备的Sonar系统的IoT项目

📅  最后修改于: 2021-01-04 01:01:04             🧑  作者: Mango

使用超声波传感器HC-SR04和Arduino设备的Sonar系统的IoT项目

让我们使用超声波HC-SR04设备和Arduino(Arduino UNO)构建声纳系统的IoT项目。声纳系统检测到其范围(角度和距离)内的物体,并在笔记本电脑(显示器)屏幕上显示其外观。声纳使用通过对象的声波的echo原理。

硬件要求

  • Arduino UNO板
  • Arduino UNO的USB电缆连接器
  • 超声波HC-SR04
  • 跳线公对母
  • 微型服务器SG90

软件需求

  • Arduino软件
  • 处理软件

声纳系统的工作原理

Ultralonic HC-SR04发出40,000Hz的超声波,并在空中传播。如果有物体或障碍物进入其路径,则声波会与该物体碰撞并反弹回超声模块。物体的角度和距离已显示在屏幕上(显示器)。

在此项目中,我们使用处理应用程序显示声纳范围。

在为Sonar系统编写程序之前,首先要通过超声波传感器HC-SR04和Arduino进行距离计算,在这里我们提供了超声波设备的工作原理。

编写一个Arduino程序,使用Ultrasonic HC-SR04测量距离并旋转伺服电机。

#include 
const int trigPin = 8;
const int echoPin = 9;
long duration; //declare time duration
int distance;  //declare distance
Servo myServo; // Object servo

void setup() {
  pinMode(trigPin, OUTPUT); // trigPin as an output
  pinMode(echoPin, INPUT); // echoPin as an input
  Serial.begin(9600);
  myServo.attach(10); // pin connected to Servo
}

void loop() {
  // rotating servo i++ depicts increment of one degree
  for(int i=0;i<=180;i++){  
  myServo.write(i);
  delay(30);
  distance = calculateDistance();
  Serial.print(i); 
  Serial.print(","); 
  Serial.print(distance); 
  Serial.print(".");
  }
  // Repeats the previous lines from 180 to 0 degrees
  for(int i=180;i>0;i--){  
  myServo.write(i);
  delay(30);
  distance = calculateDistance();
  Serial.print(i);
  Serial.print(",");
  Serial.print(distance);
  Serial.print(".");
  }
}

int calculateDistance(){ 
  digitalWrite(trigPin, LOW); 
  delayMicroseconds(2);
  // Sets the trigPin on HIGH state for 10 micro seconds
  digitalWrite(trigPin, HIGH); 
  delayMicroseconds(10);
  digitalWrite(trigPin, LOW);
  duration = pulseIn(echoPin, HIGH); 
  distance= duration*0.034/2;
  return distance;
}

编译代码。

现在,使用Arduino USB连接器将Arduino设备与您的个人计算机连接,然后上传程序。

数字电路图

超声波传感器HC-SR04 Arduino UNO
VCC ——————————–> 5v
触发——————————–>引脚8
回声——————————–> Pin 9
GND ——————————–> GND

微型伺服马达SG90 Arduino UNO
橙色线———————->针10
红线———————-> 3.3v
棕线———————-> GND

现在,将风扇的较大部分放在伺服电机的旋转轮上。将您的超声波设备放在伺服电机上以使其旋转(您可以使用双面胶带)。

在Processing IDE中测试以下代码并运行。当对象进入Ultrasonic设备范围时,Processing IDE将显示对象的角度距离。

import processing.serial.*;
import java.awt.event.KeyEvent;
import java.io.IOException;
Serial myPort;// defubes variables
String angle="";
String distance="";
String data="";
String noObject;
float pixsDistance;
int iAngle, iDistance;
int index1=0;
int index2=0;
PFont orcFont;
void setup() {
  size (1366, 768);
  smooth();
  myPort = new Serial(this,"COM3", 9600); // change this accordingly
  myPort.bufferUntil('.'); // reads the data from the serial port up to the character ?.?. So actually it reads this: angle,distance.
}
void draw() {
  fill(98,245,31);
  // simulating motion blur and slow fade of the moving line
  noStroke();
  fill(0,4);
  rect(0, 0, width, height-height*0.065);
  fill(98,245,31); // green color
  // calls the functions for drawing the radar
  drawRadar();
  drawLine();
  drawObject();
  drawText();
}
void serialEvent (Serial myPort) { // starts reading data from the Serial Port
// reads the data from the Serial Port up to the character ?.? and puts it into the String variable ?data?.
  data = myPort.readStringUntil('.');
  data = data.substring(0,data.length()-1);
  index1 = data.indexOf(","); // find the character ?,? and puts it into the variable ?index1?
  angle= data.substring(0, index1); // read the data from position ?0? to position of the variable index1 or thats the value of the angle the Arduino Board sent into the Serial Port
  distance= data.substring(index1+1, data.length()); // read the data from position ?index1? to the end of the data pr thats the value of the distance
  // converts the String variables into Integer
  iAngle = int(angle);
  iDistance = int(distance);
}
void drawRadar() {
  pushMatrix();
  translate(width/2,height-height*0.074); // moves the starting coordinats to new location
  noFill();
  strokeWeight(2);
  stroke(98,245,31);
  // draws the arc lines
  arc(0,0,(width-width*0.0625),(width-width*0.0625),PI,TWO_PI);
  arc(0,0,(width-width*0.27),(width-width*0.27),PI,TWO_PI);
  arc(0,0,(width-width*0.479),(width-width*0.479),PI,TWO_PI);
  arc(0,0,(width-width*0.687),(width-width*0.687),PI,TWO_PI);
  // draws the angle lines
  line(-width/2,0,width/2,0);
  line(0,0,(-width/2)*cos(radians(30)),(-width/2)*sin(radians(30)));
  line(0,0,(-width/2)*cos(radians(60)),(-width/2)*sin(radians(60)));
  line(0,0,(-width/2)*cos(radians(90)),(-width/2)*sin(radians(90)));
  line(0,0,(-width/2)*cos(radians(120)),(-width/2)*sin(radians(120)));
  line(0,0,(-width/2)*cos(radians(150)),(-width/2)*sin(radians(150)));
  line((-width/2)*cos(radians(30)),0,width/2,0);
  popMatrix();
}
void drawObject() {
  pushMatrix();
  translate(width/2,height-height*0.074); // moves the starting coordinats to new location
  strokeWeight(9);
  stroke(255,10,10); // red color
  pixsDistance = iDistance*((height-height*0.1666)*0.025); // covers the distance from the sensor from cm to pixels
  // limiting the range to 40 cms
  if(iDistance<40){
    // draws the object according to the angle and the distance
    line(pixsDistance*cos(radians(iAngle)),-pixsDistance*sin(radians(iAngle)),(width-width*0.505)*cos(radians(iAngle)),-(width-width*0.505)*sin(radians(iAngle)));
  }
  popMatrix();
}
void drawLine() {
  pushMatrix();
  strokeWeight(9);
  stroke(30,250,60);
  translate(width/2,height-height*0.074); // moves the starting coordinats to new location
  line(0,0,(height-height*0.12)*cos(radians(iAngle)),-(height-height*0.12)*sin(radians(iAngle))); // draws the line according to the angle
  popMatrix();
}
void drawText() { // draws the texts on the screen
  pushMatrix();
  if(iDistance>40) {
    noObject = "Out of Range";
  }
  else {
    noObject = "In Range";
  }
  fill(0,0,0);
  noStroke();
  rect(0, height-height*0.0648, width, height);
  fill(98,245,31);
  textSize(25);
  text("10cm",width-width*0.3854,height-height*0.0833);
  text("20cm",width-width*0.281,height-height*0.0833);
  text("30cm",width-width*0.177,height-height*0.0833);
  text("40cm",width-width*0.0729,height-height*0.0833);
  textSize(40);
  text("Angle: " + iAngle +" ?", width-width*0.78, height-height*0.0277);
  text("Distance: ", width-width*0.36, height-height*0.0277);
  if(iDistance<40) {
    text(" " + iDistance +" cm", width-width*0.225, height-height*0.0277);
  }
  textSize(25);
  fill(98,245,60);
  translate((width-width*0.4994)+width/2*cos(radians(30)),(height-height*0.0907)-width/2*sin(radians(30)));
  rotate(-radians(-60));
  text("30?",0,0);
  resetMatrix();
  translate((width-width*0.503)+width/2*cos(radians(60)),(height-height*0.0888)-width/2*sin(radians(60)));
  rotate(-radians(-30));
  text("60?",0,0);
  resetMatrix();
  translate((width-width*0.507)+width/2*cos(radians(90)),(height-height*0.0833)-width/2*sin(radians(90)));
  rotate(radians(0));
  text("90?",0,0);
  resetMatrix();
  translate(width-width*0.513+width/2*cos(radians(120)),(height-height*0.07129)-width/2*sin(radians(120)));
  rotate(radians(-30));
  text("120?",0,0);
  resetMatrix();
  translate((width-width*0.5104)+width/2*cos(radians(150)),(height-height*0.0574)-width/2*sin(radians(150)));
  rotate(radians(-60));
  text("150?",0,0);
  popMatrix();
}

现在,运行您的处理应用程序,然后将一个对象(笔)放在Ultrasonic设备的前面。当伺服电动机旋转并且物体进入超声波设备的范围内时,物体的外观就会出现在显示屏上。存在的对象用红色标记标记,如果在超声波设备处理应用程序范围内没有任何对象,则显示绿色标记。