📅  最后修改于: 2021-01-11 10:55:57             🧑  作者: Mango
神经样式转移是用于获取两个图像(内容图像和样式参考图像)并将它们融合在一起的优化技术,因此输出图像看起来像内容图像,但以样式参考图像的样式“绘制”。
开启Google colab
from __future__ import absolute_import, division, print_function, unicode_literals
try:
# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x
except Exception:
pass
import tensorflow as tf
输出:
TensorFlow 2.x selected.
import IPython.display as display
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.figsize'] = (12,12)
mpl.rcParams['axes.grid'] = False
import numpy as np
import time
import functools
content_path = tf.keras.utils.get_file('nature.jpg','https://www.eadegallery.co.nz/wp-content/uploads/2019/03/626a6823-af82-432a-8d3d-d8295b1a9aed-l.jpg')
style_path = tf.keras.utils.get_file('cloud.jpg','https://i.pinimg.com/originals/11/91/4f/11914f29c6d3e9828cc5f5c2fd64cfdc.jpg')
输出:
Downloading data from https://www.eadegallery.co.nz/wp-content/uploads/2019/03/626a6823-af82-432a-8d3d-d8295b1a9aed-l.jpg
1122304/1117520 [==============================] - 1s 1us/step
Downloading data from https://i.pinimg.com/originals/11/91/4f/11914f29c6d3e9828cc5f5c2fd64cfdc.jpg
49152/43511 [=================================] - 0s 0us/step5. def
检查最大尺寸为512像素。
load_img(path_to_img):
max_dim = 512
img = tf.io.read_file(path_to_img)
img = tf.image.decode_image(img, channels=3)
img = tf.image.convert_image_dtype(img, tf.float32)
shape = tf.cast(tf.shape(img)[:-1], tf.float32)
long_dim = max(shape)
scale = max_dim / long_dim
new_shape = tf.cast(shape * scale, tf.int32)
img = tf.image.resize(img, new_shape)
img = img[tf.newaxis, :]
return img
def imshow(image, title=None):
if len(image.shape) > 3:
image = tf.squeeze(image, axis=0)
plt.imshow(image)
if title:
plt.title(title)
content_image = load_img(content_path)
style_image = load_img(style_path)
plt.subplot(1, 2, 1)
imshow(content_image, 'Content Image')
plt.subplot(1, 2, 2)
imshow(style_image, 'Style Image')
输出:
x = tf.keras.applications.vgg19.preprocess_input(content_image*255)
x = tf.image.resize(x, (224, 224))
vgg = tf.keras.applications.VGG19(include_top=True, weights='imagenet')
prediction_probabilities = vgg(x)
prediction_probabilities.shape
输出:
Downloading data from https://github.com/fchollet/deep-learning- models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels.h5
574717952/574710816 [==============================] - 8s 0us/step
TensorShape([1, 1000])
predicted_top_5 = tf.keras.applications.vgg19.decode_predictions(prediction_probabilities.numpy())[0]
[(class_name, prob) for (number, class_name, prob) in predicted_top_5]
输出:
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json
40960/35363 [==================================] - 0s 0us/step
[('mobile_home', 0.7314594),
('picket_fence', 0.119986326),
('greenhouse', 0.026051044),
('thatch', 0.023595566),
('boathouse', 0.014751049)]
使用模型的中间层来表示图像的内容和样式。从输入层开始,前几层激活表示低级表示类似的边缘和纹理。
对于输入图像,请尝试在中间层匹配相似的样式和内容目标表示。
加载VGG19并在我们的映像上运行它,以确保在此处正确使用它。
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
print()
for layer in vgg.layers:
print(layer.name)
输出:
Download data from https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5
80142336/80134624 [==============================] - 2s 0us/step
input_2
block1_conv1
block1_conv2
block1_pool
block2_conv1
block2_conv2
block2_pool
block3_conv1
block3_conv2
block3_conv3
block3_conv4
block3_pool
block4_conv1
block4_conv2
block4_conv3
block4_conv4
block4_pool
block5_conv1
block5_conv2
block5_conv3
block5_conv4
block5_pool
# Content layer
content_layers = ['block5_conv2']
# Style layer of interest
style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']
num_content_layers = len(content_layers)
num_style_layers = len(style_layers)
在较高的层次上,对于执行图像分类的网络,它了解图像并要求将图像作为像素并构建内部插图,该插图将原始图像像素转换为图像中存在的复杂特征。
这也是卷积神经网络能够很好地泛化的原因:它们可以捕获类中的偏差和定义特征(例如猫与狗),这些特征与图像输入模型和输出排列标签,模型无关作为复杂的特征提取器提供。通过访问模型的中间层,我们可以描述输入图像的样式和内容。
定义了tf.keras.applications中的网络,因此我们可以使用Keras功能API轻松提取中间层值。
要使用功能性API定义任何模型,请指定输入和输出:
模型=模型(输入,输出)
给定的函数将构建一个VGG19模型,该模型返回中间层的列表。
def vgg_layers(layer_names):
""" Creating a vgg model that returns a list of intermediate output values."""
# Load our model. Load pretrained VGG, trained on imagenet data
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False
outputs = [vgg.get_layer(name).output for name in layer_names]
model = tf.keras.Model([vgg.input], outputs)
return model
style_extractor = vgg_layers(style_layers)
style_outputs = style_extractor(style_image*255)
#Look at the statistics of each layer's output
for name, output in zip(style_layers, style_outputs):
print(name)
print(" shape: ", output.numpy().shape)
print(" min: ", output.numpy().min())
print(" max: ", output.numpy().max())
print(" mean: ", output.numpy().mean())
print()
输出:
block1_conv1
shape: (1, 427, 512, 64)
min: 0.0
max: 763.51953
mean: 25.987665
block2_conv1
shape: (1, 213, 256, 128)
min: 0.0
max: 3484.3037
mean: 134.27835
block3_conv1
shape: (1, 106, 128, 256)
min: 0.0
max: 7291.078
mean: 143.77878
block4_conv1
shape: (1, 53, 64, 512)
min: 0.0
max: 13492.799
mean: 530.00244
block5_conv1
shape: (1, 26, 32, 512)
min: 0.0
max: 2881.529
mean: 40.596397
图像的内容由地图共同特征的值表示。
通过在所有位置获取输出乘积来计算包括此信息的Gram矩阵。
可以针对特定层计算Gram矩阵,如下所示:
这是使用tf.linalg.einsum函数简洁实现的:
def gram_matrix(input_tensor):
result = tf.linalg.einsum('bijc,bijd->bcd', input_tensor, input_tensor)
input_shape = tf.shape(input_tensor)
num_locations = tf.cast(input_shape[1]*input_shape[2], tf.float32)
return result/(num_locations)
构建返回内容和样式张量的模型。
class StyleContentModel(tf.keras.models.Model):
def __init__(self, style_layers, content_layers):
super(StyleContentModel, self).__init__()
self.vgg = vgg_layers(style_layers + content_layers)
self.style_layers = style_layers
self.content_layers = content_layers
self.num_style_layers = len(style_layers)
self.vgg.trainable = False
def call(self, inputs):
"Expects float input in [0,1]"
inputs = inputs*255.0
preprocessed_input = tf.keras.applications.vgg19.preprocess_input(inputs)
outputs = self.vgg(preprocessed_input)
style_outputs, content_outputs = (outputs[:self.num_style_layers],outputs[self.num_style_layers:])
style_outputs = [gram_matrix(style_output)
for style_output in style_outputs]
content_dict = {content_name:value for content_name, value in zip(self.content_layers, content_outputs)}
style_dict = {style_name:value
for style_name, value
in zip(self.style_layers, style_outputs)}
return {'content':content_dict, 'style':style_dict}
当在图像上调用时,此模型返回style_layers的语法矩阵(style )和content_layers的内容:
extractor = StyleContentModel(style_layers, content_layers)
results = extractor(tf.constant(content_image))
style_results = results['style']
print('Styles:')
for name, output in sorted(results['style'].items()):
print(" ", name)
print(" shape: ", output.numpy().shape)
print(" min: ", output.numpy().min())
print(" max: ", output.numpy().max())
print(" mean: ", output.numpy().mean())
print()
print("Contents:")
for name, output in sorted(results['content'].items()):
print(" ", name)
print(" shape: ", output.numpy().shape)
print(" min: ", output.numpy().min())
print(" max: ", output.numpy().max())
print(" mean: ", output.numpy().mean())
输出:
Styles:
block1_conv1
shape: (1, 64, 64)
min: 0.0055228453
max: 28014.557
mean: 263.79025
block2_conv1
shape: (1, 128, 128)
min: 0.0
max: 61479.496
mean: 9100.949
block3_conv1
shape: (1, 256, 256)
min: 0.0
max: 545623.44
mean: 7660.976
block4_conv1
shape: (1, 512, 512)
min: 0.0
max: 4320502.0
mean: 134288.84
block5_conv1
shape: (1, 512, 512)
min: 0.0
max: 110005.37
mean: 1487.0381
Contents:
block5_conv2
shape: (1, 26, 32, 512)
min: 0.0
max: 2410.8796
mean: 13.764149
使用此样式和内容提取器,我们实现了样式传递算法。通过评估图像输出相对于每个目标的均方误差,然后对损失进行加权求和,即可做到这一点。
设置我们的样式和内容目标值:
style_targets = extractor(style_image)['style']
content_targets = extractor(content_image)['content']
定义一个tf.Variable包含要保留的图像。借助内容图像对其进行初始化(tf.Variable与内容图像具有相同的形状):
image = tf.Variable(content_image)
这是一张浮动图像,定义一个函数以将像素值保持在0到1之间:
def clip_0_1(image):
return tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
创建优化器。本文建议LBFGS :
opt = tf.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=1e-1)
要对其进行优化,请使用两个损失的权重组合来获得总损失:
style_weight=1e-2
content_weight=1e4
def style_content_loss(outputs):
style_outputs = outputs['style']
content_outputs = outputs['content']
style_loss = tf.add_n([tf.reduce_mean((style_outputs[name]-style_targets[name])**2)
for name in style_outputs.keys()])
style_loss *= style_weight / num_style_layers
content_loss = tf.add_n([tf.reduce_mean((content_outputs[name]-content_targets[name])**2)
for name in content_outputs.keys()])
content_loss *= content_weight / num_content_layers
loss = style_loss + content_loss
return loss
使用函数tf.GradientTape更新图像。
@tf.function()
def train_step(image):
with tf.GradientTape() as tape:
outputs = extractor(image)
loss = style_content_loss(outputs)
grad = tape.gradient(loss, image)
opt.apply_gradients([(grad, image)])
image.assign(clip_0_1(image))
运行以下步骤进行测试:
train_step (image)
train_step (image)
train_step (image)
plt.imshow(image.read_value()[0])
输出:
在此步骤中执行更长的优化:
import time
start = time.time()
epochs = 10
steps_per_epoch = 100
step = 0
for n in range(epochs):
for m in range(steps_per_epoch):
step += 1
train_step(image)
print(".", end='')
display.clear_output(wait=True)
imshow(image.read_value())
plt.title("Train step: {}".format(step))
plt.show()
end = time.time()
print("Total time: {:.1f}".format(end-start))
输出:
def high_pass_x_y(image):
x_var = image[:,:,1:,:] - image[:,:,:-1,:]
y_var = image[:,1:,:,:] - image[:,:-1,:,:]
return x_var, y_var
x_deltas, y_deltas = high_pass_x_y(content_image)
plt.figure(figsize=(14,10))
plt.subplot(2,2,1)
imshow(clip_0_1(2*y_deltas+0.5), "Horizontal Deltas: Original")
plt.subplot(2,2,2)
imshow(clip_0_1(2*x_deltas+0.5), "Vertical Deltas: Original")
x_deltas, y_deltas = high_pass_x_y(image)
plt.subplot(2,2,3)
imshow(clip_0_1(2*y_deltas+0.5), "Horizontal Deltas: Styled")
plt.subplot(2,2,4)
imshow(clip_0_1(2*x_deltas+0.5), "Vertical Deltas: Styled")
输出:
这显示了高频分量如何增加。
该高频分量是边缘检测器。在给定的示例中,我们从边缘检测器获得了相同的输出:
plt.figure(figsize=(14,10))
sobel = tf.image.sobel_edges(content_image)
plt.subplot(1,2,1)
imshow(clip_0_1(sobel [...,0]/4+0.5), "Horizontal Sobel-edges")
plt.subplot(1,2,2)
imshow(clip_0_1(sobel[...,1]/4+0.5), "Vertical Sobel-edges")
输出:
与此相关的正则化损失是值的平方和:
def total_variation_loss(image):
x_deltas, y_deltas = high_pass_x_y(image)
return tf.reduce_sum(tf.abs(x_deltas)) + tf.reduce_sum(tf.abs(y_deltas))
total_variation_loss(image).numpy()
输出:
99172.59
那证明了它的作用。但是不需要自己实现,它包括一个标准实现:
tf.image.total_variation(image).numpy()
输出:
array([99172.59], dtype=float32)
选择函数total_variation_loss的权重:
total_variation_weight=30
现在, train_step函数:
@tf.function()
def train_step(image):
with tf.GradientTape() as tape:
outputs = extractor(image)
loss = style_content_loss(outputs)
loss += total_variation_weight*tf.image.total_variation(image)
grad = tape.gradient(loss, image)
opt.apply_gradients([(grad, image)])
image.assign(clip_0_1(image))
重新初始化优化变量:
image = tf.Variable(content_image)
并运行优化:
import time
start = time.time()
epochs = 10
steps_per_epoch = 100
step = 0
for n in range(epochs):
for m in range(steps_per_epoch):
step += 1
train_step(image)
print(".", end='')
display.clear_output(wait=True)
display.display(tensor_to_image(image))
print("Train step: {}".format(step))
end = time.time()
print("Total time: {:.1f}".format(end-start))
输出:
file_name = 'styletransfer.png'
tensor_to_image(image). save(file_name)
try: from google. colab import files
except ImportError:
pass
else:
files.download(file_name)