📅  最后修改于: 2023-12-03 15:03:28.466000             🧑  作者: Mango
When working with Excel files in Python using Pandas, it is not uncommon to encounter missing or null values represented by NaN (Not a Number). In this article, we will discuss how to handle NaN values when reading Excel files with Pandas.
Pandas provides a read_excel()
function that allows us to read data from Excel files into a DataFrame.
import pandas as pd
df = pd.read_excel('file.xlsx')
By default, read_excel()
will replace all empty cells in the Excel file with NaN
values.
When we have missing or null values represented by NaN
, we need to decide how to handle them. There are several options available to us:
We can drop all rows containing NaN
values from our DataFrame using the dropna()
function.
df.dropna(inplace=True)
This will drop all rows containing NaN
values from the DataFrame.
We can fill NaN
values with a specific value, such as the mean or median of the column.
df.fillna(df.mean(), inplace=True)
This will fill all NaN
values in the DataFrame with the mean value of each column.
We can interpolate NaN
values using the interpolate()
function.
df.interpolate(inplace=True)
This will interpolate all NaN
values in the DataFrame using linear interpolation.
In this article, we discussed how to handle NaN
values when reading Excel files with Pandas. We explored three different options for handling NaN
values: dropping them, filling them, and interpolating them. Understanding how to handle missing or null values is an important skill when working with data in Pandas.