Python中的 Matplotlib.pyplot.yticks()
Matplotlib是Python中的一个库,它是 NumPy 库的数值数学扩展。 Pyplot是Matplotlib模块的基于状态的接口,它提供了一个类似 MATLAB 的接口。
Matplotlib.pyplot.yticks()函数
matplotlib 库的 pyplot 模块中的annotate()函数用于获取和设置 y 轴的当前刻度位置和标签。
Syntax: matplotlib.pyplot.yticks(ticks=None, labels=None, **kwargs)
Parameters: This method accept the following parameters that are described below:
- ticks: This parameter is the list of xtick locations. and an optional parameter. If an empty list is passed as an argument then it will removes all xticks
- labels: This parameter contains labels to place at the given ticks locations. And it is an optional parameter.
- **kwargs: This parameter is Text properties that is used to control the appearance of the labels.
Returns: This returns the following:
- locs :This returns the list of ytick locations.
- labels :This returns the list of ylabel Text objects.
The resultant is (locs, labels)
下面的示例说明了 matplotlib.pyplot 中的 matplotlib.pyplot.yticks()函数:
示例 #1:
# Implementation of matplotlib.pyplot.yticks()
# function
import numpy as np
import matplotlib.pyplot as plt
# values of x and y axes
valx = [30, 35, 50, 5, 10, 40, 45, 15, 20, 25]
valy = [1, 4, 3, 2, 7, 6, 9, 8, 10, 5]
plt.plot(valx, valy)
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.xticks(np.arange(0, 60, 5))
plt.yticks(np.arange(0, 15, 1))
plt.show()
输出:
示例 #2:
#Implementation of matplotlib.pyplot.yticks()
# function
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes
def get_demo_image():
from matplotlib.cbook import get_sample_data
import numpy as np
f = get_sample_data("axes_grid/bivariate_normal.npy",
asfileobj=False)
z = np.load(f)
# z is a numpy array of 15x15
return z, (3, 19, 4, 13)
fig, ax = plt.subplots(figsize=[5, 4])
Z, extent = get_demo_image()
ax.set(aspect=1,
xlim=(0, 65),
ylim=(0, 50))
axins = zoomed_inset_axes(ax, zoom=2, loc='upper right')
im = axins.imshow(Z, extent=extent, interpolation="nearest",
origin="upper")
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.yticks(visible=False)
plt.show()
输出: