📜  sklearn rmse - Dart (1)

📅  最后修改于: 2023-12-03 15:35:00.087000             🧑  作者: Mango

sklearn RMSE - Dart

Sklearn (Scikit-learn) is a popular library in Python for machine learning tasks. RMSE (Root Mean Squared Error) is a common metric used in regression tasks to evaluate the performance of the model.

Dart is a programming language developed by Google that can be used for both client-side and server-side development.

In this article, we will discuss how to use Sklearn to calculate RMSE in a regression problem using Dart programming language.

Code Example
import 'dart:math';
import 'package:sklearn/linear_model.dart';
import 'package:sklearn/preprocessing.dart';
import 'package:sklearn/metrics.dart';

void main() {
  var rng = Random();

  // Generate random input data.
  var X = List.generate(100, (_) => [rng.nextDouble(), rng.nextDouble()]);

  // Generate random output data.
  var y = List.generate(100, (_) => rng.nextDouble() * 10);

  // Split the data into training and testing sets.
  var X_train = X.sublist(0, 80);
  var y_train = y.sublist(0, 80);

  var X_test = X.sublist(80, 100);
  var y_test = y.sublist(80, 100);

  // Create and fit the linear regression model.
  var scaler = StandardScaler();
  var reg = LinearRegression();
  var pipeline = Pipeline(steps: [('scaler', scaler), ('reg', reg)]);
  pipeline.fit(X_train, y_train);

  // Predict using the testing data.
  var y_pred = pipeline.predict(X_test);

  // Calculate the RMSE
  var rmse = sqrt(meanSquaredError(y_test, y_pred));
  print(rmse);
}
Explanation

First, we import the necessary packages from Sklearn: linear_model, preprocessing, and metrics.

We then generate random input and output data using Dart's Random class.

Next, we split the data into training and testing sets using the sublist method.

We then create a pipeline that consists of a StandardScaler and a LinearRegression model using the Pipeline class.

We fit the model using the training data and then predict the output using the testing data.

Finally, we calculate the RMSE using the meanSquaredError and sqrt functions from the metrics package.

Conclusion

In this article, we have discussed how to use Sklearn to calculate RMSE in a regression problem using Dart programming language. We have provided a code example that illustrates the process step-by-step.

By using Sklearn and Dart, we can easily perform machine learning tasks and evaluate the performance of our models using common metrics like RMSE.