📜  双向链接列表上的QuickSort

📅  最后修改于: 2021-04-29 02:36:46             🧑  作者: Mango

以下是数组的QuickSort的典型递归实现。该实现使用last元素作为支点。

C++
/* A typical recursive implementation of Quicksort for array*/
 
/* This function takes last element as pivot, places the pivot element at its
   correct position in sorted array, and places all smaller (smaller than
   pivot) to left of pivot and all greater elements to right of pivot */
int partition (int arr[], int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
 
 
    for (int j = l; j <= h- 1; j++)
    {
        if (arr[j] <= x)
        {
            i++;
            swap (&arr[i], &arr[j]);
        }
    }
    swap (&arr[i + 1], &arr[h]);
    return (i + 1);
}
 
/* A[] --> Array to be sorted, l  --> Starting index, h  --> Ending index */
void quickSort(int A[], int l, int h)
{
    if (l < h)
    {       
        int p = partition(A, l, h); /* Partitioning index */
        quickSort(A, l, p - 1); 
        quickSort(A, p + 1, h);
    }
}


Java
/* A typical recursive implementation of
   Quicksort for array*/
  
/* This function takes last element as pivot,
   places the pivot element at its correct
   position in sorted array, and places all
   smaller (smaller than pivot) to left of
   pivot and all greater elements to right
   of pivot */
static int partition (int []arr, int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
     
    for(int j = l; j <= h - 1; j++)
    {
        if (arr[j] <= x)
        {
            i++;
            int tmp = arr[i];
            arr[i] = arr[j];
            arr[j] = tmp;
        }
    }   
    int tmp = arr[i + 1];
    arr[i + 1] = arr[h];
    arr[h] = tmp;
    return(i + 1);
}
  
/* A[] --> Array to be sorted,
    l  --> Starting index,
    h  --> Ending index */
static void quickSort(int []A, int l,
                      int h)
{
    if (l < h)
    {
       
        // Partitioning index
        int p = partition(A, l, h);
        quickSort(A, l, p - 1); 
        quickSort(A, p + 1, h);
    }
}
 
// This code is contributed by pratham76.


Python3
"""A typical recursive implementation of Quicksort for array """
  
""" This function takes last element as pivot,
   places the pivot element at its correct
   position in sorted array, and places all
   smaller (smaller than pivot) to left of
   pivot and all greater elements to right
   of pivot
"""
 
"""
 i --> is the first index in the array
 x --> is the last index in the array
 tmp --> is a temporary variable for swaping values (integer)
"""
# array arr, integer l, integer h
def  partition (arr, l, h):
    x = arr[h]
    i = (l - 1)
    for j in range(l, h):
        if (arr[j] <= x):
            i +=1
            tmp = arr[i]
            arr[i] = arr[j]
            arr[j] = tmp
 
    tmp = arr[i + 1]
    arr[i + 1] = arr[h]
    arr[h] = tmp
    return(i + 1)
 
"""
A --> Array to be sorted,
l --> Starting index,
h --> Ending index
"""
 
# array A, integer l, integer h
def quickSort(A, l, h):
    if (l < h):
        p = partition(A, l, h) # pivot index
        quickSort(A, l, p - 1) # left
        quickSort(A, p + 1, h) # right
 
# This code is contributed by humphreykibet.


C#
/* A typical recursive implementation of
   Quicksort for array*/
  
/* This function takes last element as pivot,
   places the pivot element at its correct
   position in sorted array, and places all
   smaller (smaller than pivot) to left of
   pivot and all greater elements to right
   of pivot */
static int partition (int []arr, int l, int h)
{
    int x = arr[h];
    int i = (l - 1);
     
    for(int j = l; j <= h - 1; j++)
    {
        if (arr[j] <= x)
        {
            i++;
            int tmp = arr[i];
            arr[i] = arr[j];
            arr[j] = tmp;
        }
    }
     
    int tmp = arr[i + 1];
    arr[i + 1] = arr[h];
    arr[h] = tmp;
    return(i + 1);
}
  
/* A[] --> Array to be sorted,
    l  --> Starting index,
    h  --> Ending index */
static void quickSort(int []A, int l,
                      int h)
{
    if (l < h)
    {       
        // Partitioning index
        int p = partition(A, l, h);
        quickSort(A, l, p - 1); 
        quickSort(A, p + 1, h);
    }
}
 
// This code is contributed by rutvik_56


C++
// A C++ program to sort a linked list using Quicksort
#include 
using namespace std;
 
/* a node of the doubly linked list */
class Node
{
    public:
    int data;
    Node *next;
    Node *prev;
};
 
/* A utility function to swap two elements */
void swap ( int* a, int* b )
{ int t = *a; *a = *b; *b = t; }
 
// A utility function to find
// last node of linked list
Node *lastNode(Node *root)
{
    while (root && root->next)
        root = root->next;
    return root;
}
 
/* Considers last element as pivot,
places the pivot element at its
correct position in sorted array,
and places all smaller (smaller than
pivot) to left of pivot and all greater
elements to right of pivot */
Node* partition(Node *l, Node *h)
{
    // set pivot as h element
    int x = h->data;
 
    // similar to i = l-1 for array implementation
    Node *i = l->prev;
 
    // Similar to "for (int j = l; j <= h- 1; j++)"
    for (Node *j = l; j != h; j = j->next)
    {
        if (j->data <= x)
        {
            // Similar to i++ for array
            i = (i == NULL)? l : i->next;
 
            swap(&(i->data), &(j->data));
        }
    }
    i = (i == NULL)? l : i->next; // Similar to i++
    swap(&(i->data), &(h->data));
    return i;
}
 
/* A recursive implementation
of quicksort for linked list */
void _quickSort(Node* l, Node *h)
{
    if (h != NULL && l != h && l != h->next)
    {
        Node *p = partition(l, h);
        _quickSort(l, p->prev);
        _quickSort(p->next, h);
    }
}
 
// The main function to sort a linked list.
// It mainly calls _quickSort()
void quickSort(Node *head)
{
    // Find last node
    Node *h = lastNode(head);
 
    // Call the recursive QuickSort
    _quickSort(head, h);
}
 
// A utility function to print contents of arr
void printList(Node *head)
{
    while (head)
    {
        cout << head->data << " ";
        head = head->next;
    }
    cout << endl;
}
 
/* Function to insert a node at the
beginging of the Doubly Linked List */
void push(Node** head_ref, int new_data)
{
    Node* new_node = new Node; /* allocate node */
    new_node->data = new_data;
 
    /* since we are adding at the
    beginning, prev is always NULL */
    new_node->prev = NULL;
 
    /* link the old list off the new node */
    new_node->next = (*head_ref);
 
    /* change prev of head node to new node */
    if ((*head_ref) != NULL) (*head_ref)->prev = new_node ;
 
    /* move the head to point to the new node */
    (*head_ref) = new_node;
}
 
/* Driver code */
int main()
{
    Node *a = NULL;
    push(&a, 5);
    push(&a, 20);
    push(&a, 4);
    push(&a, 3);
    push(&a, 30);
 
    cout << "Linked List before sorting \n";
    printList(a);
 
    quickSort(a);
 
    cout << "Linked List after sorting \n";
    printList(a);
 
    return 0;
}
 
// This code is contributed by rathbhupendra


C
// C program to sort a linked list using Quicksort
#include 
#include 
 
/* a node of the doubly linked list */
struct Node
{
    int data;
    struct Node *next;
    struct Node *prev;
};
 
/* A utility function to swap two elements */
void swap ( int* a, int* b )
{ int t = *a; *a = *b; *b = t; }
 
// A utility function to find last node of linked list
struct Node *lastNode(struct Node *root)
{
    while (root && root->next)
        root = root->next;
    return root;
}
 
/* Considers last element as pivot, places the
pivot element at its correct position in sorted array,
and places all smaller (smaller than pivot) to left
of pivot and all greater elements to right of pivot */
struct Node* partition(struct Node *l, struct Node *h)
{
    // set pivot as h element
    int x = h->data;
 
    // similar to i = l-1 for array implementation
    struct Node *i = l->prev;
 
    // Similar to "for (int j = l; j <= h- 1; j++)"
    for (struct Node *j = l; j != h; j = j->next)
    {
        if (j->data <= x)
        {
            // Similar to i++ for array
            i = (i == NULL) ? l : i->next;
 
            swap(&(i->data), &(j->data));
        }
    }
    i = (i == NULL) ? l : i->next; // Similar to i++
    swap(&(i->data), &(h->data));
    return i;
}
 
/* A recursive implementation of quicksort for linked list */
void _quickSort(struct Node* l, struct Node *h)
{
    if (h != NULL && l != h && l != h->next)
    {
        struct Node *p = partition(l, h);
        _quickSort(l, p->prev);
        _quickSort(p->next, h);
    }
}
 
// The main function to sort a linked list.
// It mainly calls _quickSort()
void quickSort(struct Node *head)
{
    // Find last node
    struct Node *h = lastNode(head);
 
    // Call the recursive QuickSort
    _quickSort(head, h);
}
 
// A utility function to print contents of arr
void printList(struct Node *head)
{
    while (head)
    {
        printf("%d ", head->data);
        head = head->next;
    }
    printf("\n");
}
 
/* Function to insert a node at the
beginning of the Doubly Linked List */
void push(struct Node** head_ref, int new_data)
{
    struct Node* new_node = (struct Node*)
               malloc(sizeof(struct Node)); /* allocate node */
    new_node->data = new_data;
 
    /* since we are adding at the beginning,
    prev is always NULL */
    new_node->prev = NULL;
 
    /* link the old list off the new node */
    new_node->next = (*head_ref);
 
    /* change prev of head node to new node */
    if ((*head_ref) != NULL) (*head_ref)->prev = new_node ;
 
    /* move the head to point to the new node */
    (*head_ref) = new_node;
}
 
// Driver Code
int main(int argc, char **argv)
{
    struct Node *a = NULL;
    push(&a, 5);
    push(&a, 20);
    push(&a, 4);
    push(&a, 3);
    push(&a, 30);
 
    printf("Linked List before sorting \n");
    printList(a);
 
    quickSort(a);
 
    printf("Linked List after sorting \n");
    printList(a);
 
    return 0;
}


Java
// A Java program to sort a linked list using Quicksort
class QuickSort_using_Doubly_LinkedList{
    Node head;
   
/* a node of the doubly linked list */ 
    static class Node{
        private int data;
        private Node next;
        private Node prev;
         
        Node(int d){
            data = d;
            next = null;
            prev = null;
        }
    }
     
// A utility function to find last node of linked list   
    Node lastNode(Node node){
        while(node.next!=null)
            node = node.next;
        return node;
    }
     
 
/* Considers last element as pivot, places the pivot element at its
   correct position in sorted array, and places all smaller (smaller than
   pivot) to left of pivot and all greater elements to right of pivot */
    Node partition(Node l,Node h)
    {
       // set pivot as h element
        int x = h.data;
         
        // similar to i = l-1 for array implementation
        Node i = l.prev;
         
        // Similar to "for (int j = l; j <= h- 1; j++)"
        for(Node j=l; j!=h; j=j.next)
        {
            if(j.data <= x)
            {
                // Similar to i++ for array
                i = (i==null) ? l : i.next;
                int temp = i.data;
                i.data = j.data;
                j.data = temp;
            }
        }
        i = (i==null) ? l : i.next;  // Similar to i++
        int temp = i.data;
        i.data = h.data;
        h.data = temp;
        return i;
    }
     
    /* A recursive implementation of quicksort for linked list */
    void _quickSort(Node l,Node h)
    {
        if(h!=null && l!=h && l!=h.next){
            Node temp = partition(l,h);
            _quickSort(l,temp.prev);
            _quickSort(temp.next,h);
        }
    }
     
    // The main function to sort a linked list. It mainly calls _quickSort()
    public void quickSort(Node node)
    {
        // Find last node
        Node head = lastNode(node);
         
        // Call the recursive QuickSort
        _quickSort(node,head);
    }
     
     // A utility function to print contents of arr
     public void printList(Node head)
     {
        while(head!=null){
            System.out.print(head.data+" ");
            head = head.next;
        }
    }
     
    /* Function to insert a node at the beginning of the Doubly Linked List */
    void push(int new_Data)
    {
        Node new_Node = new Node(new_Data);     /* allocate node */
         
        // if head is null, head = new_Node
        if(head==null){
            head = new_Node;
            return;
        }
         
        /* link the old list off the new node */
        new_Node.next = head;
         
        /* change prev of head node to new node */
        head.prev = new_Node;
         
        /* since we are adding at the beginning, prev is always NULL */
        new_Node.prev = null;
         
        /* move the head to point to the new node */
        head = new_Node;
    }
     
    /* Driver program to test above function */
    public static void main(String[] args){
            QuickSort_using_Doubly_LinkedList list = new QuickSort_using_Doubly_LinkedList();
             
             
            list.push(5);
            list.push(20);
            list.push(4);
            list.push(3);
            list.push(30);
           
             
            System.out.println("Linked List before sorting ");
            list.printList(list.head);
            System.out.println("\nLinked List after sorting");
            list.quickSort(list.head);
            list.printList(list.head);
         
    }
}
 
// This code has been contributed by Amit Khandelwal


C#
// A C# program to sort a linked list using Quicksort
 
using System;
    /* a node of the doubly linked list */
    public class Node
    {
        public int Data;
        public Node Next;
        public Node Prev;
 
        public Node(int d)
        {
            Data = d;
              /* Prev and Next are left Null */
        }
    }
 
    public class DoublyLinkedList
    {
        private Node _head;
        public Node Head
        {
            get => _head;
            set => _head = value;
        }
 
        // A utility function to find the last node of linked list
        private Node LastNode(Node node)
        {
            while (node.Next != null)
                node = node.Next;
            return node;
        }
 
        /* Considers last element as pivot,
        places the pivot element at its
        correct position in a sorted array,
        and places all smaller (smaller than
        pivot) to left of pivot and all
        greater elements to right of pivot */
        private Node Partition(Node last, Node head)
        {
            // set pivot as h element
            int pivot = head.Data;
 
            // similar to i = l-1 for array implementation
            Node i = last.Prev;
            int temp;
 
            // Similar to "for (int j = l; j <= h- 1; j++)"
            for (Node j = last; j != head; j = j.Next)
            {
                if (j.Data <= pivot)
                {
                    // Similar to i++ for array
                    i = (i == null) ? last : i.Next;
                    temp = i.Data;
                    i.Data = j.Data;
                    j.Data = temp;
                }
            }
            i = (i == null) ? last : i.Next; // Similar to i++
            temp = i.Data;
            i.Data = head.Data;
            head.Data = temp;
            return i;
        }
 
        /* A recursive implementation of
        quicksort for linked list */
        private void RecursiveQuickSort(Node last, Node head)
        {
            if (head != null && last != head && last != head.Next)
            {
                Node temp = Partition(last, head);
                RecursiveQuickSort(last, temp.Prev);
                RecursiveQuickSort(temp.Next, head);
            }
        }
 
        // The main function to sort a linked list.
        // It mainly calls _quickSort()
        public void QuickSort(Node node)
        {
            // Find last node
            Node head = LastNode(node);
 
            // Call the recursive QuickSort
            RecursiveQuickSort(node, head);
        }
 
        // A utility function to print contents of arr
        public void PrintList(Node head)
        {
            while (head != null)
            {
                Console.Write(head.Data + " ");
                head = head.Next;
            }
        }
 
        /* Function to insert a node at the
        beginging of the Doubly Linked List */
        public void Push(int new_Data)
        {
            Node new_Node = new Node(new_Data); /* allocate node */
 
            // if head is null, head = new_Node
            if (_head == null)
            {
                _head = new_Node;
                return;
            }
 
            /* link the old list off the new node */
            new_Node.Next = _head;
 
            /* change prev of head node to new node */
            _head.Prev = new_Node;
 
            /* since we are adding at the
            beginning, prev is always NULL */
 
            /* move the head to point to the new node */
            _head = new_Node;
        }
 
        /* Driver code */
    }
    public class QuickSort_using_Doubly_LinkedList
    {
        public static void Main(String[] args)
        {
            var list = new DoublyLinkedList();
 
            list.Push(5);
            list.Push(20);
            list.Push(4);
            list.Push(3);
            list.Push(30);
 
            Console.WriteLine("Linked List before sorting ");
            list.PrintList(list.Head);
            Console.WriteLine("\nLinked List after sorting");
            list.QuickSort(list.Head);
            list.PrintList(list.Head);
        }
    }


我们可以对链表使用相同的算法吗?
以下是双向链接列表的C++实现。这个想法很简单,我们首先找出指向最后一个节点的指针。一旦有了指向最后一个节点的指针,就可以使用指向链表的第一个和最后一个节点的指针对链表进行递归排序,类似于上面的递归函数,其中传递了第一个和最后一个数组元素的索引。链表的分区函数也类似于数组的分区。代替返回枢轴元素的索引,它返回指向枢轴元素的指针。在以下实现中,quickSort()只是一个包装函数,主要的递归函数是_quickSort(),类似于数组实现的quickSort()。

C++

// A C++ program to sort a linked list using Quicksort
#include 
using namespace std;
 
/* a node of the doubly linked list */
class Node
{
    public:
    int data;
    Node *next;
    Node *prev;
};
 
/* A utility function to swap two elements */
void swap ( int* a, int* b )
{ int t = *a; *a = *b; *b = t; }
 
// A utility function to find
// last node of linked list
Node *lastNode(Node *root)
{
    while (root && root->next)
        root = root->next;
    return root;
}
 
/* Considers last element as pivot,
places the pivot element at its
correct position in sorted array,
and places all smaller (smaller than
pivot) to left of pivot and all greater
elements to right of pivot */
Node* partition(Node *l, Node *h)
{
    // set pivot as h element
    int x = h->data;
 
    // similar to i = l-1 for array implementation
    Node *i = l->prev;
 
    // Similar to "for (int j = l; j <= h- 1; j++)"
    for (Node *j = l; j != h; j = j->next)
    {
        if (j->data <= x)
        {
            // Similar to i++ for array
            i = (i == NULL)? l : i->next;
 
            swap(&(i->data), &(j->data));
        }
    }
    i = (i == NULL)? l : i->next; // Similar to i++
    swap(&(i->data), &(h->data));
    return i;
}
 
/* A recursive implementation
of quicksort for linked list */
void _quickSort(Node* l, Node *h)
{
    if (h != NULL && l != h && l != h->next)
    {
        Node *p = partition(l, h);
        _quickSort(l, p->prev);
        _quickSort(p->next, h);
    }
}
 
// The main function to sort a linked list.
// It mainly calls _quickSort()
void quickSort(Node *head)
{
    // Find last node
    Node *h = lastNode(head);
 
    // Call the recursive QuickSort
    _quickSort(head, h);
}
 
// A utility function to print contents of arr
void printList(Node *head)
{
    while (head)
    {
        cout << head->data << " ";
        head = head->next;
    }
    cout << endl;
}
 
/* Function to insert a node at the
beginging of the Doubly Linked List */
void push(Node** head_ref, int new_data)
{
    Node* new_node = new Node; /* allocate node */
    new_node->data = new_data;
 
    /* since we are adding at the
    beginning, prev is always NULL */
    new_node->prev = NULL;
 
    /* link the old list off the new node */
    new_node->next = (*head_ref);
 
    /* change prev of head node to new node */
    if ((*head_ref) != NULL) (*head_ref)->prev = new_node ;
 
    /* move the head to point to the new node */
    (*head_ref) = new_node;
}
 
/* Driver code */
int main()
{
    Node *a = NULL;
    push(&a, 5);
    push(&a, 20);
    push(&a, 4);
    push(&a, 3);
    push(&a, 30);
 
    cout << "Linked List before sorting \n";
    printList(a);
 
    quickSort(a);
 
    cout << "Linked List after sorting \n";
    printList(a);
 
    return 0;
}
 
// This code is contributed by rathbhupendra

C

// C program to sort a linked list using Quicksort
#include 
#include 
 
/* a node of the doubly linked list */
struct Node
{
    int data;
    struct Node *next;
    struct Node *prev;
};
 
/* A utility function to swap two elements */
void swap ( int* a, int* b )
{ int t = *a; *a = *b; *b = t; }
 
// A utility function to find last node of linked list
struct Node *lastNode(struct Node *root)
{
    while (root && root->next)
        root = root->next;
    return root;
}
 
/* Considers last element as pivot, places the
pivot element at its correct position in sorted array,
and places all smaller (smaller than pivot) to left
of pivot and all greater elements to right of pivot */
struct Node* partition(struct Node *l, struct Node *h)
{
    // set pivot as h element
    int x = h->data;
 
    // similar to i = l-1 for array implementation
    struct Node *i = l->prev;
 
    // Similar to "for (int j = l; j <= h- 1; j++)"
    for (struct Node *j = l; j != h; j = j->next)
    {
        if (j->data <= x)
        {
            // Similar to i++ for array
            i = (i == NULL) ? l : i->next;
 
            swap(&(i->data), &(j->data));
        }
    }
    i = (i == NULL) ? l : i->next; // Similar to i++
    swap(&(i->data), &(h->data));
    return i;
}
 
/* A recursive implementation of quicksort for linked list */
void _quickSort(struct Node* l, struct Node *h)
{
    if (h != NULL && l != h && l != h->next)
    {
        struct Node *p = partition(l, h);
        _quickSort(l, p->prev);
        _quickSort(p->next, h);
    }
}
 
// The main function to sort a linked list.
// It mainly calls _quickSort()
void quickSort(struct Node *head)
{
    // Find last node
    struct Node *h = lastNode(head);
 
    // Call the recursive QuickSort
    _quickSort(head, h);
}
 
// A utility function to print contents of arr
void printList(struct Node *head)
{
    while (head)
    {
        printf("%d ", head->data);
        head = head->next;
    }
    printf("\n");
}
 
/* Function to insert a node at the
beginning of the Doubly Linked List */
void push(struct Node** head_ref, int new_data)
{
    struct Node* new_node = (struct Node*)
               malloc(sizeof(struct Node)); /* allocate node */
    new_node->data = new_data;
 
    /* since we are adding at the beginning,
    prev is always NULL */
    new_node->prev = NULL;
 
    /* link the old list off the new node */
    new_node->next = (*head_ref);
 
    /* change prev of head node to new node */
    if ((*head_ref) != NULL) (*head_ref)->prev = new_node ;
 
    /* move the head to point to the new node */
    (*head_ref) = new_node;
}
 
// Driver Code
int main(int argc, char **argv)
{
    struct Node *a = NULL;
    push(&a, 5);
    push(&a, 20);
    push(&a, 4);
    push(&a, 3);
    push(&a, 30);
 
    printf("Linked List before sorting \n");
    printList(a);
 
    quickSort(a);
 
    printf("Linked List after sorting \n");
    printList(a);
 
    return 0;
}

Java

// A Java program to sort a linked list using Quicksort
class QuickSort_using_Doubly_LinkedList{
    Node head;
   
/* a node of the doubly linked list */ 
    static class Node{
        private int data;
        private Node next;
        private Node prev;
         
        Node(int d){
            data = d;
            next = null;
            prev = null;
        }
    }
     
// A utility function to find last node of linked list   
    Node lastNode(Node node){
        while(node.next!=null)
            node = node.next;
        return node;
    }
     
 
/* Considers last element as pivot, places the pivot element at its
   correct position in sorted array, and places all smaller (smaller than
   pivot) to left of pivot and all greater elements to right of pivot */
    Node partition(Node l,Node h)
    {
       // set pivot as h element
        int x = h.data;
         
        // similar to i = l-1 for array implementation
        Node i = l.prev;
         
        // Similar to "for (int j = l; j <= h- 1; j++)"
        for(Node j=l; j!=h; j=j.next)
        {
            if(j.data <= x)
            {
                // Similar to i++ for array
                i = (i==null) ? l : i.next;
                int temp = i.data;
                i.data = j.data;
                j.data = temp;
            }
        }
        i = (i==null) ? l : i.next;  // Similar to i++
        int temp = i.data;
        i.data = h.data;
        h.data = temp;
        return i;
    }
     
    /* A recursive implementation of quicksort for linked list */
    void _quickSort(Node l,Node h)
    {
        if(h!=null && l!=h && l!=h.next){
            Node temp = partition(l,h);
            _quickSort(l,temp.prev);
            _quickSort(temp.next,h);
        }
    }
     
    // The main function to sort a linked list. It mainly calls _quickSort()
    public void quickSort(Node node)
    {
        // Find last node
        Node head = lastNode(node);
         
        // Call the recursive QuickSort
        _quickSort(node,head);
    }
     
     // A utility function to print contents of arr
     public void printList(Node head)
     {
        while(head!=null){
            System.out.print(head.data+" ");
            head = head.next;
        }
    }
     
    /* Function to insert a node at the beginning of the Doubly Linked List */
    void push(int new_Data)
    {
        Node new_Node = new Node(new_Data);     /* allocate node */
         
        // if head is null, head = new_Node
        if(head==null){
            head = new_Node;
            return;
        }
         
        /* link the old list off the new node */
        new_Node.next = head;
         
        /* change prev of head node to new node */
        head.prev = new_Node;
         
        /* since we are adding at the beginning, prev is always NULL */
        new_Node.prev = null;
         
        /* move the head to point to the new node */
        head = new_Node;
    }
     
    /* Driver program to test above function */
    public static void main(String[] args){
            QuickSort_using_Doubly_LinkedList list = new QuickSort_using_Doubly_LinkedList();
             
             
            list.push(5);
            list.push(20);
            list.push(4);
            list.push(3);
            list.push(30);
           
             
            System.out.println("Linked List before sorting ");
            list.printList(list.head);
            System.out.println("\nLinked List after sorting");
            list.quickSort(list.head);
            list.printList(list.head);
         
    }
}
 
// This code has been contributed by Amit Khandelwal

C#

// A C# program to sort a linked list using Quicksort
 
using System;
    /* a node of the doubly linked list */
    public class Node
    {
        public int Data;
        public Node Next;
        public Node Prev;
 
        public Node(int d)
        {
            Data = d;
              /* Prev and Next are left Null */
        }
    }
 
    public class DoublyLinkedList
    {
        private Node _head;
        public Node Head
        {
            get => _head;
            set => _head = value;
        }
 
        // A utility function to find the last node of linked list
        private Node LastNode(Node node)
        {
            while (node.Next != null)
                node = node.Next;
            return node;
        }
 
        /* Considers last element as pivot,
        places the pivot element at its
        correct position in a sorted array,
        and places all smaller (smaller than
        pivot) to left of pivot and all
        greater elements to right of pivot */
        private Node Partition(Node last, Node head)
        {
            // set pivot as h element
            int pivot = head.Data;
 
            // similar to i = l-1 for array implementation
            Node i = last.Prev;
            int temp;
 
            // Similar to "for (int j = l; j <= h- 1; j++)"
            for (Node j = last; j != head; j = j.Next)
            {
                if (j.Data <= pivot)
                {
                    // Similar to i++ for array
                    i = (i == null) ? last : i.Next;
                    temp = i.Data;
                    i.Data = j.Data;
                    j.Data = temp;
                }
            }
            i = (i == null) ? last : i.Next; // Similar to i++
            temp = i.Data;
            i.Data = head.Data;
            head.Data = temp;
            return i;
        }
 
        /* A recursive implementation of
        quicksort for linked list */
        private void RecursiveQuickSort(Node last, Node head)
        {
            if (head != null && last != head && last != head.Next)
            {
                Node temp = Partition(last, head);
                RecursiveQuickSort(last, temp.Prev);
                RecursiveQuickSort(temp.Next, head);
            }
        }
 
        // The main function to sort a linked list.
        // It mainly calls _quickSort()
        public void QuickSort(Node node)
        {
            // Find last node
            Node head = LastNode(node);
 
            // Call the recursive QuickSort
            RecursiveQuickSort(node, head);
        }
 
        // A utility function to print contents of arr
        public void PrintList(Node head)
        {
            while (head != null)
            {
                Console.Write(head.Data + " ");
                head = head.Next;
            }
        }
 
        /* Function to insert a node at the
        beginging of the Doubly Linked List */
        public void Push(int new_Data)
        {
            Node new_Node = new Node(new_Data); /* allocate node */
 
            // if head is null, head = new_Node
            if (_head == null)
            {
                _head = new_Node;
                return;
            }
 
            /* link the old list off the new node */
            new_Node.Next = _head;
 
            /* change prev of head node to new node */
            _head.Prev = new_Node;
 
            /* since we are adding at the
            beginning, prev is always NULL */
 
            /* move the head to point to the new node */
            _head = new_Node;
        }
 
        /* Driver code */
    }
    public class QuickSort_using_Doubly_LinkedList
    {
        public static void Main(String[] args)
        {
            var list = new DoublyLinkedList();
 
            list.Push(5);
            list.Push(20);
            list.Push(4);
            list.Push(3);
            list.Push(30);
 
            Console.WriteLine("Linked List before sorting ");
            list.PrintList(list.Head);
            Console.WriteLine("\nLinked List after sorting");
            list.QuickSort(list.Head);
            list.PrintList(list.Head);
        }
    }

输出 :

Linked List before sorting
30  3  4  20  5
Linked List after sorting
3  4  5  20  30

时间复杂度:以上实现的时间复杂度与数组的QuickSort()的时间复杂度相同。在最坏的情况下需要O(n ^ 2)时间,在平均和最好的情况下需要O(nLogn)。最坏的情况发生在链表已经排序的时候。
我们可以对链接列表实施随机快速排序吗?
仅当我们可以选择一个固定点作为枢轴时(如上述实现中的最后一个元素),才能为链接列表实现Quicksort。通过选择随机数据透视表,无法对链接列表有效地实现Random QuickSort。

锻炼:
上面的实现是针对双链表的。将其修改为单链列表。请注意,单链接列表中没有上一个指针。
有关解决方案,请参阅单链接列表上的QuickSort。