📜  模式搜索的Aho-Corasick算法

📅  最后修改于: 2021-04-29 10:43:41             🧑  作者: Mango

给定输入文本和k个单词数组arr [],查找输入文本中所有单词的所有出现。令n为文本的长度, m为所有单词的总数字符,即m = length(arr [0])+ length(arr [1])+…+ length(arr [k-1])。这里, k是输入单词的总数。

例子:

Input: text = "ahishers"    
       arr[] = {"he", "she", "hers", "his"}

Output:
   Word his appears from 1 to 3
   Word he appears from 4 to 5
   Word she appears from 3 to 5
   Word hers appears from 4 to 7

如果我们使用像KMP这样的线性时间搜索算法,那么我们需要一个一个地搜索text []中的所有单词。这使我们的总时间复杂度为O(n +长度(word [0])+ O(n +长度(word [1])+ O(n +长度(word [2]])+…O(n +长度( word [k-1])。时间复杂度可以写成O(n * k + m)

Aho-Corasick算法查找O(n + m + z)时间中的所有单词,其中z是文本中单词出现的总数。 Aho–Corasick字符串匹配算法构成了原始Unix命令fgrep的基础。

  • 处理:在arr []中建立所有单词的自动机。自动机主要具有以下三个功能:
Go To :   This function simply follows edges
          of Trie of all words in arr[]. It is
          represented as 2D array g[][] where
          we store next state for current state 
          and character.

Failure : This function stores all edges that are
          followed when current character doesn't
          have edge in Trie.  It is represented as
          1D array f[] where we store next state for
          current state. 

Output :  Stores indexes of all words that end at 
          current state. It is represented as 1D 
          array o[] where we store indexes
          of all matching words as a bitmap for 
          current state.

  • 匹配:遍历内置自动机上的给定文本以查找所有匹配的单词。

预处理:

  • 我们首先为所有单词构建一个Trie(或关键字树)。

特里

  • 这部分填充goto g [] []中的条目,并输出o []。
  • 接下来,我们将Trie扩展为自动机以支持线性时间匹配。

  • 此部分填充失败f []中的条目并输出o []。

去 :
我们建造特里。对于所有在根部都没有边缘的字符,我们在根部添加一条边缘。
失败 :
对于状态s,我们找到最长的适当后缀,该后缀是某些模式的适当前缀。这是使用Trie的广度优先遍历完成的。
输出 :
对于状态s,存储所有以s结尾的单词的索引。这些索引存储为按位映射(通过对值进行按位或)。这也使用具有故障的广度优先遍历进行计算。

下面是Aho-Corasick算法的实现

C++
// C++ program for implementation of Aho Corasick algorithm
// for string matching
using namespace std;
#include 
 
// Max number of states in the matching machine.
// Should be equal to the sum of the length of all keywords.
const int MAXS = 500;
 
// Maximum number of characters in input alphabet
const int MAXC = 26;
 
// OUTPUT FUNCTION IS IMPLEMENTED USING out[]
// Bit i in this mask is one if the word with index i
// appears when the machine enters this state.
int out[MAXS];
 
// FAILURE FUNCTION IS IMPLEMENTED USING f[]
int f[MAXS];
 
// GOTO FUNCTION (OR TRIE) IS IMPLEMENTED USING g[][]
int g[MAXS][MAXC];
 
// Builds the string matching machine.
// arr -   array of words. The index of each keyword is important:
//         "out[state] & (1 << i)" is > 0 if we just found word[i]
//         in the text.
// Returns the number of states that the built machine has.
// States are numbered 0 up to the return value - 1, inclusive.
int buildMatchingMachine(string arr[], int k)
{
    // Initialize all values in output function as 0.
    memset(out, 0, sizeof out);
 
    // Initialize all values in goto function as -1.
    memset(g, -1, sizeof g);
 
    // Initially, we just have the 0 state
    int states = 1;
 
    // Construct values for goto function, i.e., fill g[][]
    // This is same as building a Trie for arr[]
    for (int i = 0; i < k; ++i)
    {
        const string &word = arr[i];
        int currentState = 0;
 
        // Insert all characters of current word in arr[]
        for (int j = 0; j < word.size(); ++j)
        {
            int ch = word[j] - 'a';
 
            // Allocate a new node (create a new state) if a
            // node for ch doesn't exist.
            if (g[currentState][ch] == -1)
                g[currentState][ch] = states++;
 
            currentState = g[currentState][ch];
        }
 
        // Add current word in output function
        out[currentState] |= (1 << i);
    }
 
    // For all characters which don't have an edge from
    // root (or state 0) in Trie, add a goto edge to state
    // 0 itself
    for (int ch = 0; ch < MAXC; ++ch)
        if (g[0][ch] == -1)
            g[0][ch] = 0;
 
    // Now, let's build the failure function
 
    // Initialize values in fail function
    memset(f, -1, sizeof f);
 
    // Failure function is computed in breadth first order
    // using a queue
    queue q;
 
     // Iterate over every possible input
    for (int ch = 0; ch < MAXC; ++ch)
    {
        // All nodes of depth 1 have failure function value
        // as 0. For example, in above diagram we move to 0
        // from states 1 and 3.
        if (g[0][ch] != 0)
        {
            f[g[0][ch]] = 0;
            q.push(g[0][ch]);
        }
    }
 
    // Now queue has states 1 and 3
    while (q.size())
    {
        // Remove the front state from queue
        int state = q.front();
        q.pop();
 
        // For the removed state, find failure function for
        // all those characters for which goto function is
        // not defined.
        for (int ch = 0; ch <= MAXC; ++ch)
        {
            // If goto function is defined for character 'ch'
            // and 'state'
            if (g[state][ch] != -1)
            {
                // Find failure state of removed state
                int failure = f[state];
 
                // Find the deepest node labeled by proper
                // suffix of string from root to current
                // state.
                while (g[failure][ch] == -1)
                      failure = f[failure];
 
                failure = g[failure][ch];
                f[g[state][ch]] = failure;
 
                // Merge output values
                out[g[state][ch]] |= out[failure];
 
                // Insert the next level node (of Trie) in Queue
                q.push(g[state][ch]);
            }
        }
    }
 
    return states;
}
 
// Returns the next state the machine will transition to using goto
// and failure functions.
// currentState - The current state of the machine. Must be between
//                0 and the number of states - 1, inclusive.
// nextInput - The next character that enters into the machine.
int findNextState(int currentState, char nextInput)
{
    int answer = currentState;
    int ch = nextInput - 'a';
 
    // If goto is not defined, use failure function
    while (g[answer][ch] == -1)
        answer = f[answer];
 
    return g[answer][ch];
}
 
// This function finds all occurrences of all array words
// in text.
void searchWords(string arr[], int k, string text)
{
    // Preprocess patterns.
    // Build machine with goto, failure and output functions
    buildMatchingMachine(arr, k);
 
    // Initialize current state
    int currentState = 0;
 
    // Traverse the text through the nuilt machine to find
    // all occurrences of words in arr[]
    for (int i = 0; i < text.size(); ++i)
    {
        currentState = findNextState(currentState, text[i]);
 
        // If match not found, move to next state
        if (out[currentState] == 0)
             continue;
 
        // Match found, print all matching words of arr[]
        // using output function.
        for (int j = 0; j < k; ++j)
        {
            if (out[currentState] & (1 << j))
            {
                cout << "Word " << arr[j] << " appears from "
                     << i - arr[j].size() + 1 << " to " << i << endl;
            }
        }
    }
}
 
// Driver program to test above
int main()
{
    string arr[] = {"he", "she", "hers", "his"};
    string text = "ahishers";
    int k = sizeof(arr)/sizeof(arr[0]);
 
    searchWords(arr, k, text);
 
    return 0;
}


Java
// Java program for implementation of
// Aho Corasick algorithm for String
// matching
import java.util.*;
 
class GFG{
 
// Max number of states in the matching
// machine. Should be equal to the sum
// of the length of all keywords.
static int MAXS = 500;
 
// Maximum number of characters
// in input alphabet
static int MAXC = 26;
 
// OUTPUT FUNCTION IS IMPLEMENTED USING out[]
// Bit i in this mask is one if the word with
// index i appears when the machine enters
// this state.
static int []out = new int[MAXS];
 
// FAILURE FUNCTION IS IMPLEMENTED USING f[]
static int []f = new int[MAXS];
 
// GOTO FUNCTION (OR TRIE) IS
// IMPLEMENTED USING g[][]
static int [][]g = new int[MAXS][MAXC];
 
// Builds the String matching machine.
// arr -   array of words. The index of each keyword is important:
//         "out[state] & (1 << i)" is > 0 if we just found word[i]
//         in the text.
// Returns the number of states that the built machine has.
// States are numbered 0 up to the return value - 1, inclusive.
static int buildMatchingMachine(String arr[], int k)
{
     
    // Initialize all values in output function as 0.
    Arrays.fill(out, 0);
 
    // Initialize all values in goto function as -1.
    for(int i = 0; i < MAXS; i++)
        Arrays.fill(g[i], -1);
 
    // Initially, we just have the 0 state
    int states = 1;
 
    // Convalues for goto function, i.e., fill g[][]
    // This is same as building a Trie for arr[]
    for(int i = 0; i < k; ++i)
    {
        String word = arr[i];
        int currentState = 0;
 
        // Insert all characters of current
        // word in arr[]
        for(int j = 0; j < word.length(); ++j)
        {
            int ch = word.charAt(j) - 'a';
 
            // Allocate a new node (create a new state)
            // if a node for ch doesn't exist.
            if (g[currentState][ch] == -1)
                g[currentState][ch] = states++;
 
            currentState = g[currentState][ch];
        }
 
        // Add current word in output function
        out[currentState] |= (1 << i);
    }
 
    // For all characters which don't have
    // an edge from root (or state 0) in Trie,
    // add a goto edge to state 0 itself
    for(int ch = 0; ch < MAXC; ++ch)
        if (g[0][ch] == -1)
            g[0][ch] = 0;
 
    // Now, let's build the failure function
    // Initialize values in fail function
    Arrays.fill(f, -1);
 
    // Failure function is computed in
    // breadth first order
    // using a queue
    Queue q = new LinkedList<>();
 
    // Iterate over every possible input
    for(int ch = 0; ch < MAXC; ++ch)
    {
         
        // All nodes of depth 1 have failure
        // function value as 0. For example,
        // in above diagram we move to 0
        // from states 1 and 3.
        if (g[0][ch] != 0)
        {
            f[g[0][ch]] = 0;
            q.add(g[0][ch]);
        }
    }
 
    // Now queue has states 1 and 3
    while (!q.isEmpty())
    {
         
        // Remove the front state from queue
        int state = q.peek();
        q.remove();
 
        // For the removed state, find failure
        // function for all those characters
        // for which goto function is
        // not defined.
        for(int ch = 0; ch < MAXC; ++ch)
        {
             
            // If goto function is defined for
            // character 'ch' and 'state'
            if (g[state][ch] != -1)
            {
                 
                // Find failure state of removed state
                int failure = f[state];
 
                // Find the deepest node labeled by proper
                // suffix of String from root to current
                // state.
                while (g[failure][ch] == -1)
                      failure = f[failure];
 
                failure = g[failure][ch];
                f[g[state][ch]] = failure;
 
                // Merge output values
                out[g[state][ch]] |= out[failure];
 
                // Insert the next level node
                // (of Trie) in Queue
                q.add(g[state][ch]);
            }
        }
    }
    return states;
}
 
// Returns the next state the machine will transition to using goto
// and failure functions.
// currentState - The current state of the machine. Must be between
//                0 and the number of states - 1, inclusive.
// nextInput - The next character that enters into the machine.
static int findNextState(int currentState, char nextInput)
{
    int answer = currentState;
    int ch = nextInput - 'a';
 
    // If goto is not defined, use
    // failure function
    while (g[answer][ch] == -1)
        answer = f[answer];
 
    return g[answer][ch];
}
 
// This function finds all occurrences of
// all array words in text.
static void searchWords(String arr[], int k,
                        String text)
{
     
    // Preprocess patterns.
    // Build machine with goto, failure
    // and output functions
    buildMatchingMachine(arr, k);
 
    // Initialize current state
    int currentState = 0;
 
    // Traverse the text through the
    // nuilt machine to find all
    // occurrences of words in arr[]
    for(int i = 0; i < text.length(); ++i)
    {
        currentState = findNextState(currentState,
                                     text.charAt(i));
 
        // If match not found, move to next state
        if (out[currentState] == 0)
             continue;
 
        // Match found, print all matching
        // words of arr[]
        // using output function.
        for(int j = 0; j < k; ++j)
        {
            if ((out[currentState] & (1 << j)) > 0)
            {
                System.out.print("Word " +  arr[j] +
                                 " appears from " +
                                 (i - arr[j].length() + 1) +
                                 " to " +  i + "\n");
            }
        }
    }
}
 
// Driver code
public static void main(String[] args)
{
    String arr[] = { "he", "she", "hers", "his" };
    String text = "ahishers";
    int k = arr.length;
 
    searchWords(arr, k, text);
}
}
 
// This code is contributed by Princi Singh


C#
// C# program for implementation of
// Aho Corasick algorithm for String
// matching
using System;
using System.Collections.Generic;
 
class GFG{
 
// Max number of states in the matching
// machine. Should be equal to the sum
// of the length of all keywords.
static int MAXS = 500;
 
// Maximum number of characters
// in input alphabet
static int MAXC = 26;
 
// OUTPUT FUNCTION IS IMPLEMENTED USING out[]
// Bit i in this mask is one if the word with
// index i appears when the machine enters
// this state.
static int[] outt = new int[MAXS];
 
// FAILURE FUNCTION IS IMPLEMENTED USING f[]
static int[] f = new int[MAXS];
 
// GOTO FUNCTION (OR TRIE) IS
// IMPLEMENTED USING g[,]
static int[,] g = new int[MAXS, MAXC];
 
// Builds the String matching machine.
// arr -   array of words. The index of each keyword is
// important:
//         "out[state] & (1 << i)" is > 0 if we just
//         found word[i] in the text.
// Returns the number of states that the built machine
// has. States are numbered 0 up to the return value -
// 1, inclusive.
static int buildMatchingMachine(String[] arr, int k)
{
     
    // Initialize all values in output function as 0.
    for(int i = 0; i < outt.Length; i++)
        outt[i] = 0;
 
    // Initialize all values in goto function as -1.
    for(int i = 0; i < MAXS; i++)
        for(int j = 0; j < MAXC; j++)
            g[i, j] = -1;
 
    // Initially, we just have the 0 state
    int states = 1;
 
    // Convalues for goto function, i.e., fill g[,]
    // This is same as building a Trie for []arr
    for(int i = 0; i < k; ++i)
    {
        String word = arr[i];
        int currentState = 0;
 
        // Insert all characters of current
        // word in []arr
        for(int j = 0; j < word.Length; ++j)
        {
            int ch = word[j] - 'a';
 
            // Allocate a new node (create a new state)
            // if a node for ch doesn't exist.
            if (g[currentState, ch] == -1)
                g[currentState, ch] = states++;
 
            currentState = g[currentState, ch];
        }
 
        // Add current word in output function
        outt[currentState] |= (1 << i);
    }
 
    // For all characters which don't have
    // an edge from root (or state 0) in Trie,
    // add a goto edge to state 0 itself
    for(int ch = 0; ch < MAXC; ++ch)
        if (g[0, ch] == -1)
            g[0, ch] = 0;
 
    // Now, let's build the failure function
    // Initialize values in fail function
    for(int i = 0; i < MAXC; i++)
        f[i] = 0;
 
    // Failure function is computed in
    // breadth first order
    // using a queue
    Queue q = new Queue();
 
    // Iterate over every possible input
    for(int ch = 0; ch < MAXC; ++ch)
    {
         
        // All nodes of depth 1 have failure
        // function value as 0. For example,
        // in above diagram we move to 0
        // from states 1 and 3.
        if (g[0, ch] != 0)
        {
            f[g[0, ch]] = 0;
            q.Enqueue(g[0, ch]);
        }
    }
 
    // Now queue has states 1 and 3
    while (q.Count != 0)
    {
         
        // Remove the front state from queue
        int state = q.Peek();
        q.Dequeue();
 
        // For the removed state, find failure
        // function for all those characters
        // for which goto function is
        // not defined.
        for(int ch = 0; ch < MAXC; ++ch)
        {
             
            // If goto function is defined for
            // character 'ch' and 'state'
            if (g[state, ch] != -1)
            {
                 
                // Find failure state of removed state
                int failure = f[state];
 
                // Find the deepest node labeled by
                // proper suffix of String from root to
                // current state.
                while (g[failure, ch] == -1)
                    failure = f[failure];
 
                failure = g[failure, ch];
                f[g[state, ch]] = failure;
 
                // Merge output values
                outt[g[state, ch]] |= outt[failure];
 
                // Insert the next level node
                // (of Trie) in Queue
                q.Enqueue(g[state, ch]);
            }
        }
    }
    return states;
}
 
// Returns the next state the machine will transition to
// using goto and failure functions. currentState - The
// current state of the machine. Must be between
//                0 and the number of states - 1,
//                inclusive.
// nextInput - The next character that enters into the
// machine.
static int findNextState(int currentState,
                         char nextInput)
{
    int answer = currentState;
    int ch = nextInput - 'a';
 
    // If goto is not defined, use
    // failure function
    while (g[answer, ch] == -1)
        answer = f[answer];
 
    return g[answer, ch];
}
 
// This function finds all occurrences of
// all array words in text.
static void searchWords(String[] arr, int k,
                        String text)
{
 
    // Preprocess patterns.
    // Build machine with goto, failure
    // and output functions
    buildMatchingMachine(arr, k);
 
    // Initialize current state
    int currentState = 0;
 
    // Traverse the text through the
    // nuilt machine to find all
    // occurrences of words in []arr
    for(int i = 0; i < text.Length; ++i)
    {
        currentState = findNextState(currentState,
                                     text[i]);
 
        // If match not found, move to next state
        if (outt[currentState] == 0)
            continue;
 
        // Match found, print all matching
        // words of []arr
        // using output function.
        for(int j = 0; j < k; ++j)
        {
            if ((outt[currentState] & (1 << j)) > 0)
            {
                Console.Write("Word " + arr[j] +
                              " appears from " +
                              (i - arr[j].Length + 1) +
                              " to " + i + "\n");
            }
        }
    }
}
 
// Driver code
public static void Main(String[] args)
{
    String[] arr = { "he", "she", "hers", "his" };
    String text = "ahishers";
    int k = arr.Length;
 
    searchWords(arr, k, text);
}
}
 
// This code is contributed by Amit Katiyar


输出:

Word his appears from 1 to 3
Word he appears from 4 to 5
Word she appears from 3 to 5
Word hers appears from 4 to 7