给定一个堆栈,使用递归对其进行排序。不允许使用while,for..etc之类的任何循环结构。我们只能在Stack S上使用以下ADT函数:
is_empty(S) : Tests whether stack is empty or not.
push(S) : Adds new element to the stack.
pop(S) : Removes top element from the stack.
top(S) : Returns value of the top element. Note that this
function does not remove element from the stack.
例子:
Input: -3 <--- Top
14
18
-5
30
Output: 30 <--- Top
18
14
-3
-5
此问题主要是使用递归的反向堆栈的变体。
解决方案的想法是将所有值保留在函数调用堆栈中,直到堆栈变空为止。当纸叠变空时,请按排序顺序一次插入所有保留的项目。在这里,排序顺序很重要。
算法
我们可以使用以下算法对堆栈元素进行排序:
sortStack(stack S)
if stack is not empty:
temp = pop(S);
sortStack(S);
sortedInsert(S, temp);
下面的算法是对元素进行插入排序:
sortedInsert(Stack S, element)
if stack is empty OR element > top element
push(S, elem)
else
temp = pop(S)
sortedInsert(S, element)
push(S, temp)
插图:
Let given stack be
-3 <-- top of the stack
14
18
-5
30
让我们使用上面的示例来说明堆栈的排序:
首先从堆栈中弹出所有元素,然后将弹出的元素存储在变量“ temp”中。弹出所有elements函数后,其堆栈框架将如下所示:
temp = -3 --> stack frame #1
temp = 14 --> stack frame #2
temp = 18 --> stack frame #3
temp = -5 --> stack frame #4
temp = 30 --> stack frame #5
现在堆栈为空,并调用了“ insert_in_sorted_order()”函数,并在堆栈底部插入了30(从堆栈帧5)。现在堆栈如下所示:
30 <-- top of the stack
现在,选择下一个元素,即-5(来自堆栈帧4)。由于-5 <30,因此-5会插入堆栈的底部。现在堆栈变为:
30 <-- top of the stack
-5
接下来的18个(来自堆栈帧3)被选中。由于18 <30,因此将18插入30以下。现在堆栈变为:
30 <-- top of the stack
18
-5
接下来的14个(来自堆栈帧2)被选中。由于14 <30和14 <18,因此将其插入18以下。现在,堆栈变为:
30 <-- top of the stack
18
14
-5
现在,选择-3(从堆栈帧1),因为-3 <30和-3 <18以及-3 <14,它将插入14以下。现在,堆栈变为:
30 <-- top of the stack
18
14
-3
-5
执行:
下面是上述算法的实现。
C++
// C++ program to sort a stack using recursion
#include
using namespace std;
// Stack is represented using linked list
struct stack {
int data;
struct stack* next;
};
// Utility function to initialize stack
void initStack(struct stack** s) { *s = NULL; }
// Utility function to chcek if stack is empty
int isEmpty(struct stack* s)
{
if (s == NULL)
return 1;
return 0;
}
// Utility function to push an item to stack
void push(struct stack** s, int x)
{
struct stack* p = (struct stack*)malloc(sizeof(*p));
if (p == NULL) {
fprintf(stderr, "Memory allocation failed.\n");
return;
}
p->data = x;
p->next = *s;
*s = p;
}
// Utility function to remove an item from stack
int pop(struct stack** s)
{
int x;
struct stack* temp;
x = (*s)->data;
temp = *s;
(*s) = (*s)->next;
free(temp);
return x;
}
// Function to find top item
int top(struct stack* s) { return (s->data); }
// Recursive function to insert an item x in sorted way
void sortedInsert(struct stack** s, int x)
{
// Base case: Either stack is empty or newly inserted
// item is greater than top (more than all existing)
if (isEmpty(*s) or x > top(*s)) {
push(s, x);
return;
}
// If top is greater, remove the top item and recur
int temp = pop(s);
sortedInsert(s, x);
// Put back the top item removed earlier
push(s, temp);
}
// Function to sort stack
void sortStack(struct stack** s)
{
// If stack is not empty
if (!isEmpty(*s)) {
// Remove the top item
int x = pop(s);
// Sort remaining stack
sortStack(s);
// Push the top item back in sorted stack
sortedInsert(s, x);
}
}
// Utility function to print contents of stack
void printStack(struct stack* s)
{
while (s) {
cout << s->data << " ";
s = s->next;
}
cout << "\n";
}
// Driver code
int main(void)
{
struct stack* top;
initStack(&top);
push(&top, 30);
push(&top, -5);
push(&top, 18);
push(&top, 14);
push(&top, -3);
cout << "Stack elements before sorting:\n";
printStack(top);
sortStack(&top);
cout << "\n";
cout << "Stack elements after sorting:\n";
printStack(top);
return 0;
}
// This code is contributed by SHUBHAMSINGH10
C
// C program to sort a stack using recursion
#include
#include
// Stack is represented using linked list
struct stack {
int data;
struct stack* next;
};
// Utility function to initialize stack
void initStack(struct stack** s) { *s = NULL; }
// Utility function to chcek if stack is empty
int isEmpty(struct stack* s)
{
if (s == NULL)
return 1;
return 0;
}
// Utility function to push an item to stack
void push(struct stack** s, int x)
{
struct stack* p = (struct stack*)malloc(sizeof(*p));
if (p == NULL) {
fprintf(stderr, "Memory allocation failed.\n");
return;
}
p->data = x;
p->next = *s;
*s = p;
}
// Utility function to remove an item from stack
int pop(struct stack** s)
{
int x;
struct stack* temp;
x = (*s)->data;
temp = *s;
(*s) = (*s)->next;
free(temp);
return x;
}
// Function to find top item
int top(struct stack* s) { return (s->data); }
// Recursive function to insert an item x in sorted way
void sortedInsert(struct stack** s, int x)
{
// Base case: Either stack is empty or newly inserted
// item is greater than top (more than all existing)
if (isEmpty(*s) || x > top(*s)) {
push(s, x);
return;
}
// If top is greater, remove the top item and recur
int temp = pop(s);
sortedInsert(s, x);
// Put back the top item removed earlier
push(s, temp);
}
// Function to sort stack
void sortStack(struct stack** s)
{
// If stack is not empty
if (!isEmpty(*s)) {
// Remove the top item
int x = pop(s);
// Sort remaining stack
sortStack(s);
// Push the top item back in sorted stack
sortedInsert(s, x);
}
}
// Utility function to print contents of stack
void printStack(struct stack* s)
{
while (s) {
printf("%d ", s->data);
s = s->next;
}
printf("\n");
}
// Driver code
int main(void)
{
struct stack* top;
initStack(&top);
push(&top, 30);
push(&top, -5);
push(&top, 18);
push(&top, 14);
push(&top, -3);
printf("Stack elements before sorting:\n");
printStack(top);
sortStack(&top);
printf("\n\n");
printf("Stack elements after sorting:\n");
printStack(top);
return 0;
}
Java
// Java program to sort a Stack using recursion
// Note that here predefined Stack class is used
// for stack operation
import java.util.ListIterator;
import java.util.Stack;
class Test
{
// Recursive Method to insert an item x in sorted way
static void sortedInsert(Stack s, int x)
{
// Base case: Either stack is empty or newly
// inserted item is greater than top (more than all
// existing)
if (s.isEmpty() || x > s.peek())
{
s.push(x);
return;
}
// If top is greater, remove the top item and recur
int temp = s.pop();
sortedInsert(s, x);
// Put back the top item removed earlier
s.push(temp);
}
// Method to sort stack
static void sortStack(Stack s)
{
// If stack is not empty
if (!s.isEmpty())
{
// Remove the top item
int x = s.pop();
// Sort remaining stack
sortStack(s);
// Push the top item back in sorted stack
sortedInsert(s, x);
}
}
// Utility Method to print contents of stack
static void printStack(Stack s)
{
ListIterator lt = s.listIterator();
// forwarding
while (lt.hasNext())
lt.next();
// printing from top to bottom
while (lt.hasPrevious())
System.out.print(lt.previous() + " ");
}
// Driver code
public static void main(String[] args)
{
Stack s = new Stack<>();
s.push(30);
s.push(-5);
s.push(18);
s.push(14);
s.push(-3);
System.out.println(
"Stack elements before sorting: ");
printStack(s);
sortStack(s);
System.out.println(
" \n\nStack elements after sorting:");
printStack(s);
}
}
Python3
# Python program to sort a stack using recursion
# Recursive method to insert element in sorted way
def sortedInsert(s, element):
# Base case: Either stack is empty or newly inserted
# item is greater than top (more than all existing)
if len(s) == 0 or element > s[-1]:
s.append(element)
return
else:
# Remove the top item and recur
temp = s.pop()
sortedInsert(s, element)
# Put back the top item removed earlier
s.append(temp)
# Method to sort stack
def sortStack(s):
# If stack is not empty
if len(s) != 0:
# Remove the top item
temp = s.pop()
# Sort remaining stack
sortStack(s)
# Push the top item back in sorted stack
sortedInsert(s, temp)
# Printing contents of stack
def printStack(s):
for i in s[::-1]:
print(i, end=" ")
print()
# Driver Code
if __name__ == '__main__':
s = []
s.append(30)
s.append(-5)
s.append(18)
s.append(14)
s.append(-3)
print("Stack elements before sorting: ")
printStack(s)
sortStack(s)
print("\nStack elements after sorting: ")
printStack(s)
# This code is contributed by Muskan Kalra.
C#
// C# program to sort a Stack using recursion
// Note that here predefined Stack class is used
// for stack operation
using System;
using System.Collections;
public class GFG
{
// Recursive Method to insert an item x in sorted way
static void sortedInsert(Stack s, int x)
{
// Base case: Either stack is empty or
// newly inserted item is greater than top
// (more than all existing)
if (s.Count == 0 || x > (int)s.Peek()) {
s.Push(x);
return;
}
// If top is greater, remove
// the top item and recur
int temp = (int)s.Peek();
s.Pop();
sortedInsert(s, x);
// Put back the top item removed earlier
s.Push(temp);
}
// Method to sort stack
static void sortStack(Stack s)
{
// If stack is not empty
if (s.Count > 0) {
// Remove the top item
int x = (int)s.Peek();
s.Pop();
// Sort remaining stack
sortStack(s);
// Push the top item back in sorted stack
sortedInsert(s, x);
}
}
// Utility Method to print contents of stack
static void printStack(Stack s)
{
foreach(int c in s) { Console.Write(c + " "); }
}
// Driver code
public static void Main(String[] args)
{
Stack s = new Stack();
s.Push(30);
s.Push(-5);
s.Push(18);
s.Push(14);
s.Push(-3);
Console.WriteLine(
"Stack elements before sorting: ");
printStack(s);
sortStack(s);
Console.WriteLine(
" \n\nStack elements after sorting:");
printStack(s);
}
}
// This code is Contibuted by Arnab Kundu
输出:
Stack elements before sorting:
-3 14 18 -5 30
Stack elements after sorting:
30 18 14 -3 -5
复杂度分析:
- 时间复杂度: O(n 2 )。
在最坏的情况下,对于每个sortstack() ,都将递归调用sortedinsert()N次,以将元素放置在正确的位置 - 辅助空间: O(N)
使用堆栈数据结构存储值