📅  最后修改于: 2023-12-03 15:05:12.417000             🧑  作者: Mango
Sheppard 的片刻修正是一个常用于机器学习中的算法,它的主要作用是用来对数据进行分类。
Sheppard 的片刻修正算法是一种基于距离度量的分类算法,最常用的距离度量是欧氏距离。它的基本思想是:将样本分配给距离最近的类,并结合它们的相似性来预测新数据点的类别。
以下是使用 Python 实现 Sheppard 的片刻修正算法的示例代码:
import numpy as np
def euclidean_distance(x1, x2):
return np.sqrt(np.sum((x1-x2)**2))
class Sheppard:
def __init__(self, k=1):
self.k = k
def fit(self, X, y):
self.X_train = X
self.y_train = y
def predict(self, X):
predicted_labels = [self._predict(x) for x in X]
return np.array(predicted_labels)
def _predict(self, x):
# compute distances
distances = [euclidean_distance(x, x_train) for x_train in self.X_train]
# get k nearest samples, labels
k_indices = np.argsort(distances)[:self.k]
k_nearest_labels = [self.y_train[i] for i in k_indices]
# majority vote, most common label
most_common_label = max(set(k_nearest_labels), key=k_nearest_labels.count)
return most_common_label
可以使用以下代码来进行示例测试:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# load iris dataset
iris = load_iris()
X = iris.data
y = iris.target
# split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234)
# train model with k=3
model = Sheppard(k=3)
model.fit(X_train, y_train)
# predict labels for test set
y_pred = model.predict(X_test)
# evaluate accuracy
accuracy = np.sum(y_pred == y_test) / len(y_test)
print(f"Accuracy: {accuracy}")
通过运行上述示例代码,可以得到模型在测试集上的准确率。通过调整 k 值的大小,可以进一步优化模型的表现。需要注意的是,当 k=1 时,该算法的分类效果与最近邻算法相同。当 k 值很大时,算法的分类效果则会变得比较糟糕。