Mahotas – 泽尼克时刻
在本文中,我们将了解如何在 mahotas 中获取给定图像的 Zernike 矩。 Zernike 多项式是一个正交基组(一组函数,其中任何一对函数的乘积的积分为零)。在图像处理、计算机视觉和相关领域中,图像矩是图像像素强度的某个特定加权平均值,或此类矩的函数,通常选择具有某些有吸引力的属性或解释。图像矩对于描述分割后的对象很有用。
在本教程中,我们将使用“Lena”图像,下面是加载 Lena 图像的命令
mahotas.demos.load('lena')
下面是莉娜的图片
In order to do this we will use mahotas.features.zernike_moments method
Syntax : mahotas.features.zernike_moments(img, radius)
Argument : It takes image object and integer as argument
Return : It returns 1-D array
注意:输入图像应被过滤或加载为灰色
为了过滤图像,我们将获取图像对象 numpy.ndarray 并在索引的帮助下对其进行过滤,下面是执行此操作的命令
image = image[:, :, 0]
下面是实现
Python3
# importing required libraries
import mahotas
import mahotas.demos
from pylab import gray, imshow, show
import numpy as np
import matplotlib.pyplot as plt
# loading image
img = mahotas.demos.load('lena')
# filtering image
img = img.max(2)
print("Image")
# showing image
imshow(img)
show()
# radius
radius = 10
# computing zernike moments
value = mahotas.features.zernike_moments(img, radius)
# printing value
print(value)
Python3
# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
import matplotlib.pyplot as plt
# loading image
img = mahotas.imread('dog_image.png')
# filtering image
img = img[:, :, 0]
print("Image")
# showing image
imshow(img)
show()
# radius
radius = 10
# computing zernike moments
value = mahotas.features.zernike_moments(img, radius)
# printing value
print(value)
输出 :
Image
[0.31830989 0.01261485 0.00614926 0.00769591 0.0097145 0.01757332
0.00617458 0.01008905 0.01415304 0.01099679 0.02894761 0.01838737
0.0074247 0.01333135 0.01958184 0.00431827 0.00540781 0.01675913
0.03511082 0.00699177 0.00357231 0.01593838 0.01621848 0.0240565
0.0154929 ]
另一个例子
Python3
# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
import matplotlib.pyplot as plt
# loading image
img = mahotas.imread('dog_image.png')
# filtering image
img = img[:, :, 0]
print("Image")
# showing image
imshow(img)
show()
# radius
radius = 10
# computing zernike moments
value = mahotas.features.zernike_moments(img, radius)
# printing value
print(value)
输出 :
Image
[0.31830989 0.00985427 0.00714652 0.00171408 0.00442245 0.01796711
0.00716781 0.00179965 0.0039829 0.0031081 0.02447476 0.0011686
0.009291 0.00174885 0.00357579 0.00692029 0.0043969 0.03528869
0.00264739 0.01381883 0.00750501 0.0036528 0.00867514 0.01298398
0.0129556 ]