📌  相关文章
📜  TensorFlow – 如何创建一个热张量

📅  最后修改于: 2022-05-13 01:54:54.772000             🧑  作者: Mango

TensorFlow – 如何创建一个热张量

TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。

一个热张量是一个张量,其中 i =j 和 i!=j 的索引处的所有值都相同。

示例 1:

Python3
# importing the library
import tensorflow as tf
  
# Initializing the Input
indices = tf.constant([1, 2, 3])
  
# Printing the Input
print("Indices: ", indices)
  
# Generating one hot Tensor
res = tf.one_hot(indices, depth = 3)
  
# Printing the resulting Tensors
print("Res: ", res )


Python3
# importing the library
import tensorflow as tf
  
# Initializing the Input
indices = tf.constant([1, 2, 3])
  
# Printing the Input
print("Indices: ", indices)
  
# Generating one hot Tensor
res = tf.one_hot(indices, depth = 3, on_value = 3, off_value =-1)
  
# Printing the resulting Tensors
print("Res: ", res )


输出:

Indices:  tf.Tensor([1 2 3], shape=(3, ), dtype=int32)
Res:  tf.Tensor(
[[0. 1. 0.]
 [0. 0. 1.]
 [0. 0. 0.]], shape=(3, 3), dtype=float32)

示例 2:此示例明确定义了一个热张量的 on 和 off 值。

Python3

# importing the library
import tensorflow as tf
  
# Initializing the Input
indices = tf.constant([1, 2, 3])
  
# Printing the Input
print("Indices: ", indices)
  
# Generating one hot Tensor
res = tf.one_hot(indices, depth = 3, on_value = 3, off_value =-1)
  
# Printing the resulting Tensors
print("Res: ", res )

输出:

Indices:  tf.Tensor([1 2 3], shape=(3, ), dtype=int32)
Res:  tf.Tensor(
[[-1  3 -1]
 [-1 -1  3]
 [-1 -1 -1]], shape=(3, 3), dtype=int32)