Pandas 中的 inplace 是什么意思?
在本文中,我们将看到 Pandas 中的 Inplace。 Inplace 是在不同函数中使用的参数。一些将 inplace 用作属性的函数,例如set_index()、 dropna() 、 fillna() 、 reset_index() 、drop()、replace() 等等。此属性的默认值为False ,它返回对象的副本。
这里我们使用fillna()方法。
Syntax: dataframe.fillna(dataframe.mean(), inplcae = False)
让我们通过逐步实现来理解这个方法:
步骤 1.首先,我们导入所有必需的库。
Python3
# import required module
import pandas as pd
Python3
# creating dataframe
dataframe = pd.DataFrame({'Name':['Shobhit','vaibhav',
'vimal','Sourabh'],
'Class':[11,12,10,9],
'Age':[18,20,21,17]})
# Checking created dataframe
display(dataframe)
Python3
# without using inplace renaming the column
new_data = dataframe.rename(columns = {'Name':'FirstName'})
# check new_data
display(new_data)
Python3
# putting inplace=False
new_data_2 = dataframe.rename(columns = {'Name':'FirstName'},
inplace = False)
#check new_data_2
display(new_data_2)
Python3
# Putting Inplace=True
dataframe.rename(columns = {'Name':'FirstName'},
inplace = True)
# check whether dataframe is modidfied or not
print(dataframe)
Python3
# importing pandas
import pandas as pd
# creating dataframe
dataframe=pd.DataFrame({'Name':['Shobhit','Vaibhav',
'Vimal','Sourabh'],
'Class':[11,12,10,9],
'Age':[18,20,21,17]})
# Checking created dataframe
# copied dataframe
display(dataframe)
# without using inplace renaming the column
new_data = dataframe.rename(columns = {'Name':'FirstName'})
# Copied dataframe
display(new_data)
# checking whether dataframe is modified or not
# Original dataframe
display(dataframe)
# putting inplace=False
new_data_2 = dataframe.rename(columns = {'Name':'FirstName'},
inplace = False)
# Copied dataframe
display(new_data_2)
# checking whether dataframe is modified or not
# Original dataframe
display(dataframe)
# Putting Inplace=True
dataframe.rename(columns = {'Name':'FirstName'},
inplace = True)
# checking whether dataframe is modified or not
# Original dataframe
display(dataframe)
第 2步。创建数据框。
蟒蛇3
# creating dataframe
dataframe = pd.DataFrame({'Name':['Shobhit','vaibhav',
'vimal','Sourabh'],
'Class':[11,12,10,9],
'Age':[18,20,21,17]})
# Checking created dataframe
display(dataframe)
输出 :
步骤 3.要查看就地使用,我们将使用重命名函数,将“Name”列重命名为“FirstName” 。
在这一步中,我们不会在我们的代码中使用 inplace。
蟒蛇3
# without using inplace renaming the column
new_data = dataframe.rename(columns = {'Name':'FirstName'})
# check new_data
display(new_data)
输出 :
我们可以清楚地看到原始数据帧没有变化。由此,我们得出结论,inplace 的默认值是 False。
现在在这一步中,我们将使用带有False值的 inplace。
蟒蛇3
# putting inplace=False
new_data_2 = dataframe.rename(columns = {'Name':'FirstName'},
inplace = False)
#check new_data_2
display(new_data_2)
输出 :
我们再次可以清楚地看到原始数据集没有变化。
最后,我们放置了等于True的值。
蟒蛇3
# Putting Inplace=True
dataframe.rename(columns = {'Name':'FirstName'},
inplace = True)
# check whether dataframe is modidfied or not
print(dataframe)
输出 :
最后,我们可以看到原始数据框列已从“Name”修改为“FirstName”。
以下是基于上述方法的完整程序:
蟒蛇3
# importing pandas
import pandas as pd
# creating dataframe
dataframe=pd.DataFrame({'Name':['Shobhit','Vaibhav',
'Vimal','Sourabh'],
'Class':[11,12,10,9],
'Age':[18,20,21,17]})
# Checking created dataframe
# copied dataframe
display(dataframe)
# without using inplace renaming the column
new_data = dataframe.rename(columns = {'Name':'FirstName'})
# Copied dataframe
display(new_data)
# checking whether dataframe is modified or not
# Original dataframe
display(dataframe)
# putting inplace=False
new_data_2 = dataframe.rename(columns = {'Name':'FirstName'},
inplace = False)
# Copied dataframe
display(new_data_2)
# checking whether dataframe is modified or not
# Original dataframe
display(dataframe)
# Putting Inplace=True
dataframe.rename(columns = {'Name':'FirstName'},
inplace = True)
# checking whether dataframe is modified or not
# Original dataframe
display(dataframe)
输出 :