📅  最后修改于: 2023-12-03 15:05:14.955000             🧑  作者: Mango
Spark SQL是Apache Spark项目中的一个模块,它提供了在分布式数据集上运行结构化数据处理的接口。其中,数据源是Spark SQL一个比较重要的概念,数据源表示的是Spark SQL可以从哪些数据源中读取数据。
Spark SQL支持从Hive、JSON、Parquet、Avro、ORC和JDBC等多种数据源中读取数据,并可以将处理后的结果存储到Hive、JSON、Parquet、Avro、ORC、表格格式(JDBC、ODBC)等多种数据源中。
下面的代码片段展示了如何通过Spark SQL从Hive中读取数据:
val spark = SparkSession.builder()
.appName("Read from Hive")
.config("spark.sql.warehouse.dir", "/user/hive/warehouse")
.enableHiveSupport().getOrCreate()
val sqlDF = spark.sql("SELECT count(*) FROM table_name")
sqlDF.show()
下面的代码片段展示了如何通过Spark SQL从JDBC数据源中读取数据:
val jdbcDF = spark.read
.format("jdbc")
.option("url", "jdbc:mysql://localhost:3306/mydb")
.option("dbtable", "mytable")
.option("user", "username")
.option("password", "password")
.load()
jdbcDF.show()
下面的代码片段展示了如何通过Spark SQL将处理结果写入到JSON数据源中:
val resultDF = ...
resultDF.write
.format("json")
.mode("overwrite")
.save("/path/to/result.json")
下面的代码片段展示了如何通过Spark SQL将处理结果写入到表格格式的数据源中:
val resultDF = ...
resultDF.write
.format("jdbc")
.option("url", "jdbc:mysql://localhost:3306/mydb")
.option("dbtable", "mytable")
.option("user", "username")
.option("password", "password")
.save()
除了上述内置的数据源,Spark SQL还允许用户自定义数据源。用户可以通过继承DataSourceV2和DataSourceV2Options接口来实现自定义数据源。下面的代码片段展示了如何实现一个基于Elasticsearch的自定义数据源:
class ElasticsearchDataSource extends DataSourceV2 with DataSourceRegister {
override def createReader(options: DataSourceOptions): DataSourceReader = {
new ElasticsearchDataSourceReader(options)
}
override def createBatchWriter(writeUUID: String, schema: StructType, mode: SaveMode, options: DataSourceOptions): Optional[DataSourceWriter] = {
Optional.empty()
}
override def shortName(): String = "elasticsearch"
}
class ElasticsearchDataSourceReader(options: DataSourceOptions) extends DataSourceReader {
override def readSchema(): StructType = {
StructType(Seq(
StructField("name", StringType),
StructField("age", IntegerType)
))
}
override def createDataReaderFactories(): util.List[DataReaderFactory[Row]] = {
val schema = readSchema()
val host = ...
val port = ...
val index = ...
val query = ...
val settings = ...
val factory = new ElasticsearchDataReaderFactory(schema, host, port, index, query, settings)
Collections.singletonList(factory)
}
}
class ElasticsearchDataReaderFactory(schema: StructType, host: String, port: Int, index: String, query: String, settings: Map[String, String]) extends DataReaderFactory[Row] {
override def createDataReader(): DataReader[Row] = {
new ElasticsearchDataReader(schema, host, port, index, query, settings)
}
}
class ElasticsearchDataReader(schema: StructType, host: String, port: Int, index: String, query: String, settings: Map[String, String]) extends DataReader[Row] {
val client = ...
val scrollId = ...
val response = client.search(query, settings)
def next(): Boolean = {
...
}
def get(): Row = {
...
}
def close(): Unit = {
client.close()
}
}
实现自定义数据源后,可以像使用内置数据源一样使用自定义数据源:
val options = Map(
"host" -> "localhost",
"port" -> "9200",
"index" -> "myindex",
"query" -> """{"query": ...}""",
"settings" -> """{"scroll": "1m"}"""
)
val df = spark.read
.format("elasticsearch")
.options(options)
.load()
df.show()
Spark SQL的数据源是Spark SQL一个非常重要的概念,通过数据源,Spark SQL可以从各种数据源中读取数据,并且可以将处理结果写入到各种数据源中。Spark SQL还允许用户自定义数据源,通过自定义数据源,用户可以将Spark SQL应用到更多的场景中。