📜  加入 PySpark 后如何避免重复列?

📅  最后修改于: 2022-05-13 01:54:56.106000             🧑  作者: Mango

加入 PySpark 后如何避免重复列?

在本文中,我们将讨论如何使用Python在 PySpark 中加入后避免 DataFrame 中的重复列。

创建第一个数据框进行演示:

Python3
# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"],
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"],
        ["5", "bobby", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
dataframe.show()


Python3
# list  of employee data
data1 = [["1", "45000", "IT"],
         ["2", "145000", "Manager"],
         ["6", "45000", "HR"],
         ["5", "34000", "Sales"]]
  
# specify column names
columns = ['ID', 'salary', 'department']
  
# creating a dataframe from the lists of data
dataframe1 = spark.createDataFrame(data1, columns)
  
dataframe1.show()


Python3
# inner join on two dataframes
# and remove duplicate column
dataframe.join(dataframe1,
               dataframe.ID == dataframe1.ID,
               "inner").drop(dataframe.ID).show()


Python3
# join on two dataframes
# and remove duplicate column
dataframe.join(dataframe1, ['ID']).show()


输出:

创建第二个数据框进行演示:

Python3

# list  of employee data
data1 = [["1", "45000", "IT"],
         ["2", "145000", "Manager"],
         ["6", "45000", "HR"],
         ["5", "34000", "Sales"]]
  
# specify column names
columns = ['ID', 'salary', 'department']
  
# creating a dataframe from the lists of data
dataframe1 = spark.createDataFrame(data1, columns)
  
dataframe1.show()

输出:

方法一:使用 drop()函数

我们可以使用像内部连接这样的连接来连接数据框,在这个连接之后,我们可以使用 drop 方法删除一个重复的列。

示例:根据 ID 连接两个数据帧并删除第一个数据帧中的重复 ID

Python3

# inner join on two dataframes
# and remove duplicate column
dataframe.join(dataframe1,
               dataframe.ID == dataframe1.ID,
               "inner").drop(dataframe.ID).show()

输出:

方法 2:使用 join()

在这里,我们只是使用 join 来连接两个数据框,然后删除重复的列。

示例:基于 ID 加入并删除重复项

Python3

# join on two dataframes
# and remove duplicate column
dataframe.join(dataframe1, ['ID']).show()

输出: