Keras 与 PyTorch
Keras和PyTorch是两个最强大的开源机器学习库。
Keras是一个基于Python的开源库,用于深度学习(用于神经网络)。它可以在 TensorFlow、Microsoft CNTK 或 Theano 之上运行。它非常易于理解和使用,适合快速实验。 Keras 模型既可以在 CPU 上运行,也可以在 GPU 上运行。
PyTorch是由 Facebook 的 AI 研究小组开发的开源机器学习库。它可以与Python和 C++ 集成。它因其高效的内存使用和轻松调试神经网络的能力而广受欢迎。
让我们看看 Keras 和 PyTorch 之间的区别。
S.No | Keras | PyTorch |
---|---|---|
1. | Keras was released in March 2015. | While PyTorch was released in October 2016. |
2. | Keras has a high level API. | While PyTorch has a low level API. |
3. | Keras is comparatively slower in speed. | While PyTorch has a higher speed than Keras, suitable for high performance. |
4. | Keras has a simple architecture,making it more readable and easy to use. | While PyTorch has very low readablility due to a complex architecture. |
5. | Keras has a smaller community support. | While PyTorch has a stronger community support. |
6. | Keras is mostly used for small datasets due to its slow speed. | While PyTorch is preferred for large datasets and high performance. |
7. | Debugging in Keras is difficult due to presence of computational junk. | While debugging in PyTorch is easier and faster. |
8. | Keras provides static computation graphs. | While PyTorch provides dynamic computation graphs. |
9. | Backend for Keras include:TensorFlow, Theano and Microsoft CNTK backend. | While PyTorch has no backend implementation. |