在 R 中将 DataFrame 列转换为数字
在本文中,我们将看到如何在 R 编程语言中将 DataFrame Column 转换为 Numeric。
所有数据框列都与一个类相关联,该类是该列的元素所属的数据类型的指示符。因此,为了模拟数据类型转换,在这种情况下必须将数据元素转换为所需的数据类型,即该列的所有元素都应该有资格成为数值。
sapply() 方法可用于以向量的形式检索列变量的数据类型。用于以下操作的数据框如下:
R
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(1:4),
col2 = factor(4:7),
col3 = letters[2:5],
col4 = 97:100, stringsAsFactors = FALSE)
print("Original DataFrame")
print (data_frame)
# indicating the data type of
# each variable
sapply(data_frame, class)
R
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(1:4),
col2 = factor(4:7),
col3 = letters[2:5],
col4 = 97:100, stringsAsFactors = FALSE)
print("Original DataFrame")
print (data_frame)
# indicating the data type of each
# variable
sapply(data_frame, class)
# converting factor type column to
# numeric
data_frame_mod <- transform(
data_frame,col2 = as.numeric(col2))
print("Modified DataFrame")
print (data_frame_mod)
# indicating the data type of each variable
sapply(data_frame_mod, class)
R
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(1:4),
col2 = factor(4:7),
col3 = letters[2:5],
col4 = 97:100, stringsAsFactors = FALSE)
print("Original DataFrame")
print (data_frame)
# indicating the data type of each
# variable
sapply(data_frame, class)
# converting factor type column to
# numeric
data_frame_mod <- transform(
data_frame, col2 = as.numeric(as.character(col2)))
print("Modified DataFrame")
print (data_frame_mod)
# indicating the data type of each
# variable
sapply(data_frame_mod, class)
R
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(6:9),
col2 = factor(4:7),
col3 = letters[2:5],
col4 = 97:100, stringsAsFactors = FALSE)
print("Original DataFrame")
print (data_frame)
# indicating the data type of each
# variable
sapply(data_frame, class)
# converting character type column
# to numeric
data_frame_col1 <- transform(
data_frame,col1 = as.numeric(col1))
print("Modified col1 DataFrame")
print (data_frame_col1)
# indicating the data type of each
# variable
sapply(data_frame_col1, class)
# converting character type column
# to numeric
data_frame_col3 <- transform(
data_frame,col3 = as.numeric(col3))
print("Modified col3 DataFrame")
print (data_frame_col3)
# indicating the data type of each
# variable
sapply(data_frame_col3, class)
R
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(6:9),
col2 = factor(4:7),
col3 = c("Geeks","For","Geeks","Gooks"),
col4 = 97:100)
print("Original DataFrame")
print (data_frame)
# indicating the data type of each
# variable
sapply(data_frame, class)
# converting character type column
# to numeric
data_frame_col3 <- transform(
data_frame,col3 = as.numeric(as.factor(col3)))
print("Modified col3 DataFrame")
print (data_frame_col3)
# indicating the data type of each
# variable
sapply(data_frame_col3, class)
R
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(6:9),
col2 = factor(4:7),
col3 = c("Geeks","For","Geeks","Gooks"),
col4 = 97:100,
col5 = c(TRUE,FALSE,TRUE,FALSE))
print("Original DataFrame")
print (data_frame)
# indicating the data type of each
# variable
sapply(data_frame, class)
# converting character type column
# to numeric
data_frame_col5 <- transform(
data_frame,col5 = as.numeric(as.factor(col5)))
print("Modified col5 DataFrame")
print (data_frame_col5)
# indicating the data type of each
# variable
sapply(data_frame_col5, class)
输出:
[1] "Original DataFrame"
col1 col2 col3 col4
1 1 4 b 97
2 2 5 c 98
3 3 6 d 99
4 4 7 e 100
col1 col2 col3 col4
"character" "factor" "character" "integer"
transform() 方法可用于模拟在此方法的参数列表中指定的数据对象中的修改。必须将更改显式保存到相同的数据帧或新的数据帧中。它可用于向数据添加新变量或修改现有变量。
Syntax: transform(data, value)
Arguments :
- data – The data object to be modified
- value – The value to be added
示例 1:将因子类型列转换为数字
进行这些转换时可能不会保留数据。数据可能会丢失或被篡改。转换操作的结果必须保存在某个变量中,以便进一步使用它。以下代码片段说明了这一点:
电阻
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(1:4),
col2 = factor(4:7),
col3 = letters[2:5],
col4 = 97:100, stringsAsFactors = FALSE)
print("Original DataFrame")
print (data_frame)
# indicating the data type of each
# variable
sapply(data_frame, class)
# converting factor type column to
# numeric
data_frame_mod <- transform(
data_frame,col2 = as.numeric(col2))
print("Modified DataFrame")
print (data_frame_mod)
# indicating the data type of each variable
sapply(data_frame_mod, class)
输出:
[1] "Original DataFrame"
col1 col2 col3 col4
1 1 4 b 97
2 2 5 c 98
3 3 6 d 99
4 4 7 e 100
col1 col2 col3 col4
"character" "factor" "character" "integer"
[1] "Modified DataFrame"
col1 col2 col3 col4
1 1 1 b 97
2 2 2 c 98
3 3 3 d 99
4 4 4 e 100
col1 col2 col3 col4
"character" "numeric" "character" "integer"
说明: col2 中原始数据帧的值范围为 4 到 7,而修改后它们是从 1 开始的整数。这意味着在直接将因子转换为数字时,数据可能不会被保留。
为了保留数据,需要首先将列的类型显式转换为 as。字符(列名)。
电阻
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(1:4),
col2 = factor(4:7),
col3 = letters[2:5],
col4 = 97:100, stringsAsFactors = FALSE)
print("Original DataFrame")
print (data_frame)
# indicating the data type of each
# variable
sapply(data_frame, class)
# converting factor type column to
# numeric
data_frame_mod <- transform(
data_frame, col2 = as.numeric(as.character(col2)))
print("Modified DataFrame")
print (data_frame_mod)
# indicating the data type of each
# variable
sapply(data_frame_mod, class)
输出:
[1] "Original DataFrame"
col1 col2 col3 col4
1 1 4 b 97
2 2 5 c 98
3 3 6 d 99
4 4 7 e 100
col1 col2 col3 col4
"character" "factor" "character" "integer"
[1] "Modified DataFrame"
col1 col2 col3 col4
1 1 4 b 97
2 2 5 c 98
3 3 6 d 99
4 4 7 e 100
col1 col2 col3 col4
"character" "numeric" "character" "integer"
说明:为了保持数据的一致性,首先将col2的数据类型改为as。字符,然后到数值,它按原样显示数据。
示例 2:将字符类型列转换为数字
字符类型的列,是单个字符或字符串,只有在这些转换是可能的情况下才能转换为数值。否则,数据将丢失并在执行时被编译器强制为缺失值或 NA 值。
这种方法描述了由于插入缺失值或 NA 值代替字符而导致的数据丢失。引入这些 NA 值是因为不能直接进行相互转换。
电阻
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(6:9),
col2 = factor(4:7),
col3 = letters[2:5],
col4 = 97:100, stringsAsFactors = FALSE)
print("Original DataFrame")
print (data_frame)
# indicating the data type of each
# variable
sapply(data_frame, class)
# converting character type column
# to numeric
data_frame_col1 <- transform(
data_frame,col1 = as.numeric(col1))
print("Modified col1 DataFrame")
print (data_frame_col1)
# indicating the data type of each
# variable
sapply(data_frame_col1, class)
# converting character type column
# to numeric
data_frame_col3 <- transform(
data_frame,col3 = as.numeric(col3))
print("Modified col3 DataFrame")
print (data_frame_col3)
# indicating the data type of each
# variable
sapply(data_frame_col3, class)
输出:
[1] "Original DataFrame"
col1 col2 col3 col4
1 6 4 b 97
2 7 5 c 98
3 8 6 d 99
4 9 7 e 100
col1 col2 col3 col4
"character" "factor" "character" "integer"
[1] "Modified col1 DataFrame"
col1 col2 col3 col4
1 6 4 b 97
2 7 5 c 98
3 8 6 d 99
4 9 7 e 100
col1 col2 col3 col4
"numeric" "factor" "character" "integer"
[1] "Modified col3 DataFrame"
col1 col2 col3 col4
1 6 4 NA 97
2 7 5 NA 98
3 8 6 NA 99
4 9 7 NA 100
col1 col2 col3 col4
"character" "factor" "numeric" "integer"
Warning message:
In eval(substitute(list(...)), `_data`, parent.frame()) :
NAs introduced by coercion
说明:使用 sapply() 方法,数据帧的 col3 的类是字符,即它由单字节字符值组成,但在应用 transform() 方法时,这些字符值被转换为缺失值或 NA 值,因为字符不能直接转换为数字数据。因此,这会导致数据丢失。
可以通过不使用 stringAsFactors=FALSE 进行转换,然后首先使用 as.factor() 将字符隐式转换为因子,然后使用 as.numeric() 隐式转换为数字数据类型。即使在这种情况下,有关实际字符串的信息也会完全丢失。但是,数据变得不明确,并可能导致实际数据丢失。根据列值的字典排序结果简单地为数据分配数值。
电阻
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(6:9),
col2 = factor(4:7),
col3 = c("Geeks","For","Geeks","Gooks"),
col4 = 97:100)
print("Original DataFrame")
print (data_frame)
# indicating the data type of each
# variable
sapply(data_frame, class)
# converting character type column
# to numeric
data_frame_col3 <- transform(
data_frame,col3 = as.numeric(as.factor(col3)))
print("Modified col3 DataFrame")
print (data_frame_col3)
# indicating the data type of each
# variable
sapply(data_frame_col3, class)
输出:
[1] "Original DataFrame"
col1 col2 col3 col4
1 6 4 Geeks 97
2 7 5 For 98
3 8 6 Geeks 99
4 9 7 Gooks 100
col1 col2 col3 col4
"factor" "factor" "factor" "integer"
[1] "Modified col3 DataFrame"
col1 col2 col3 col4
1 6 4 2 97
2 7 5 1 98
3 8 6 2 99
4 9 7 3 100
col1 col2 col3 col4
"factor" "factor" "numeric" "integer"
说明: col3 中的第一个和第三个字符串相同,因此分配了相同的数值。总的来说,这些值按升序排序,然后分配相应的整数值。 “for”是字典序中出现的最小字符串,因此,赋值为1,然后“Geeks”,其两个实例都映射到2,“Gooks”被赋值为3。因此,col3类型更改为数字。
示例 3:将逻辑类型列转换为数字
布尔值真值被赋予一个相当于 2 的数值,假布尔值被赋予一个数值 1。转换可以很容易地进行,同时保持数据的一致性。
为了保留数据,首先使用 as.factor 将包含这些逻辑值的列转换为因子类型值,然后使用 as.numeric() 为这些值分配一个数值,它只是为这两个值分配整数标识符.
电阻
# declare a dataframe
# different data type have been
# indicated for different cols
data_frame <- data.frame(
col1 = as.character(6:9),
col2 = factor(4:7),
col3 = c("Geeks","For","Geeks","Gooks"),
col4 = 97:100,
col5 = c(TRUE,FALSE,TRUE,FALSE))
print("Original DataFrame")
print (data_frame)
# indicating the data type of each
# variable
sapply(data_frame, class)
# converting character type column
# to numeric
data_frame_col5 <- transform(
data_frame,col5 = as.numeric(as.factor(col5)))
print("Modified col5 DataFrame")
print (data_frame_col5)
# indicating the data type of each
# variable
sapply(data_frame_col5, class)
输出:
[1] "Original DataFrame"
col1 col2 col3 col4 col5
1 6 4 Geeks 97 TRUE
2 7 5 For 98 FALSE
3 8 6 Geeks 99 TRUE
4 9 7 Gooks 100 FALSE
col1 col2 col3 col4 col5
"factor" "factor" "factor" "integer" "logical"
[1] "Modified col5 DataFrame"
col1 col2 col3 col4 col5
1 6 4 Geeks 97 2
2 7 5 For 98 1
3 8 6 Geeks 99 2
4 9 7 Gooks 100 1
col1 col2 col3 col4 col5
"factor" "factor" "factor" "integer" "numeric"
说明:使用 sapply() 方法,dataframe 的 col5 的类是逻辑的,即它由 TRUE 和 FALSE 布尔值组成,但是在 transform() 方法的应用中,这些逻辑值被映射为整数,并且col5 的类被转换为数字。