在 Pandas 中将列转换为行名/索引
Pandas 提供了一种方便的方式来处理数据及其转换。让我们看看如何在 Pandas 中将列转换为行名/索引。
首先使用列表的字典创建一个数据框。
Python3
# importing pandas as pd
import pandas as pd
# Creating a dict of lists
data = {'Name':["Akash", "Geeku", "Pankaj", "Sumitra","Ramlal"],
'Branch':["B.Tech", "MBA", "BCA", "B.Tech", "BCA"],
'Score':["80","90","60", "30", "50"],
'Result': ["Pass","Pass","Pass","Fail","Fail"]}
# creating a dataframe
df = pd.DataFrame(data)
df
Python3
# importing pandas as pd
import pandas as pd
# Creating a dict of lists
data = {'Name':["Akash", "Geeku", "Pankaj", "Sumitra","Ramlal"],
'Branch':["B.Tech", "MBA", "BCA", "B.Tech", "BCA"],
'Score':["80","90","60", "30", "50"],
'Result': ["Pass","Pass","Pass","Fail","Fail"]}
# Creating a dataframe
df = pd.DataFrame(data)
# Using set_index() method on 'Name' column
df = df.set_index('Name')
df
Python3
# set the index to 'None' via its name property
df.index.names = [None]
df
Python3
# importing pandas as pd
import pandas as pd
# Creating a dict of lists
data = {'name':["Akash", "Geeku", "Pankaj", "Sumitra", "Ramlal"],
'Branch':["B.Tech", "MBA", "BCA", "B.Tech", "BCA"],
'Score':["80", "90", "60", "30", "50"],
'Result': ["Pass", "Pass", "Pass", "Fail", "Fail"]}
df = pd.DataFrame(data)
# pivoting the dataframe
df.pivot(index ='Result', columns ='name')
df
输出:
方法 #1:使用 set_index() 方法。
Python3
# importing pandas as pd
import pandas as pd
# Creating a dict of lists
data = {'Name':["Akash", "Geeku", "Pankaj", "Sumitra","Ramlal"],
'Branch':["B.Tech", "MBA", "BCA", "B.Tech", "BCA"],
'Score':["80","90","60", "30", "50"],
'Result': ["Pass","Pass","Pass","Fail","Fail"]}
# Creating a dataframe
df = pd.DataFrame(data)
# Using set_index() method on 'Name' column
df = df.set_index('Name')
df
输出:
现在,将索引名称设置为无。
Python3
# set the index to 'None' via its name property
df.index.names = [None]
df
输出:
方法 #2:使用 pivot() 方法。
为了将列转换为数据框中的行名/索引,Pandas 有一个内置函数Pivot。
现在,假设我们希望 Result 是行/索引,列是我们数据框中的名称,为了实现这一点,pandas 提供了一个名为 Pivot 的方法。让我们看看它是如何工作的,
Python3
# importing pandas as pd
import pandas as pd
# Creating a dict of lists
data = {'name':["Akash", "Geeku", "Pankaj", "Sumitra", "Ramlal"],
'Branch':["B.Tech", "MBA", "BCA", "B.Tech", "BCA"],
'Score':["80", "90", "60", "30", "50"],
'Result': ["Pass", "Pass", "Pass", "Fail", "Fail"]}
df = pd.DataFrame(data)
# pivoting the dataframe
df.pivot(index ='Result', columns ='name')
df
输出: