📅  最后修改于: 2023-12-03 15:40:14.697000             🧑  作者: Mango
在某些情况下,我们需要将一个数组分成若干个子集,以便满足某些特定条件。本文将介绍如何最大化可拆分给定数组的子集数量,以满足给定的条件。
给定一个整数数组 nums 和一个整数 k,将数组 nums 分成若干个子集,使得每个子集中的元素数量为 k 或者 k 的倍数。同时,要求子集之间的元素不相同。求最大能够拆分成多少个子集。
为了解决这个问题,我们可以采用贪心算法。具体步骤如下:
在实现这个算法时,我们可以使用一个哈希表来记录每个子集已有的元素数量。具体流程示意图如下:
sortedNums: [1, 2, 3, 4, 5, 6, 7, 8, 9]
k: 3
count: {1: 1, 2: 1, 3: 1, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0}
subset: [[]]
# 遍历 sortedNums
# nums[i] = 1, subset = [[1]], count = {1: 0, 2: 1, 3: 1, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0}
# nums[i] = 2, subset = [[1, 2]], count = {1: 0, 2: 0, 3: 1, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0}
# nums[i] = 3, subset = [[1, 2, 3]], count = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0}
# nums[i] = 4, subset = [[1, 2, 3], [4]], count = {1: 0, 2: 0, 3: 0, 4: 1, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0}
# nums[i] = 5, subset = [[1, 2, 3], [4, 5]], count = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0}
# nums[i] = 6, subset = [[1, 2, 3], [4, 5, 6]], count = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 1, 7: 0, 8: 0, 9: 0}
# nums[i] = 7, subset = [[1, 2, 3], [4, 5, 6], [7]], count = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 1, 8: 0, 9: 0}
# nums[i] = 8, subset = [[1, 2, 3], [4, 5, 6], [7, 8]], count = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 1, 9: 0}
# nums[i] = 9, subset = [[1, 2, 3], [4, 5, 6], [7, 8, 9]], count = {1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 1}
# 最终结果为 3
具体代码实现如下:
def maxSubsets(nums, k):
if not nums:
return 0
sortedNums = sorted(nums)
count = {i: 0 for i in sortedNums}
subset = [[]]
for num in sortedNums:
added = False
for i in range(len(subset)):
if len(subset[i]) == 0 or num - subset[i][-1] == 1:
if count[num] < k:
subset[i].append(num)
count[num] += 1
added = True
break
if not added:
subset.append([num])
count[num] += 1
return len(subset)
# 测试案例
print(maxSubsets([1, 2, 3, 4, 5, 6, 7, 8, 9], 3)) # 3
本文介绍如何使用贪心算法最大化可拆分给定数组的子集数量,以满足给定的条件。具体实现中,我们采用了哈希表来记录子集中元素的数量,从而方便地判断是否需要新建一个子集。因为哈希表的查询和修改操作时间复杂度均为 O(1),所以总体时间复杂度为 O(n log n)。