📅  最后修改于: 2023-12-03 15:13:16.549000             🧑  作者: Mango
Adobe 面试问题考察的是应聘者对计算机科学的掌握程度,以及对技术问题的处理能力。以下是一些可能在 Adobe 面试中被提及的计算机科学问题:
二叉搜索树(Binary Search Tree)是一种特殊的二叉树结构,满足以下性质:
二叉搜索树常用于排序和搜索操作,常见的实现方式为递归和迭代两种方式。
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, val):
self.root = self._insert(self.root, val)
def _insert(self, node, val):
if not node:
return TreeNode(val)
if val < node.val:
node.left = self._insert(node.left, val)
elif val > node.val:
node.right = self._insert(node.right, val)
return node
def search(self, val):
return self._search(self.root, val)
def _search(self, node, val):
if not node or node.val == val:
return node
if val < node.val:
return self._search(node.left, val)
else:
return self._search(node.right, val)
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, val):
new_node = TreeNode(val)
if not self.root:
self.root = new_node
return
cur = self.root
while cur:
if val < cur.val:
if not cur.left:
cur.left = new_node
return
cur = cur.left
elif val > cur.val:
if not cur.right:
cur.right = new_node
return
cur = cur.right
def search(self, val):
cur = self.root
while cur:
if cur.val == val:
return cur
elif cur.val > val:
cur = cur.left
else:
cur = cur.right
return None
哈希表(Hash Table)是一种使用哈希函数来组织数据的数据结构。哈希函数将键映射到索引,使得访问一个特定键的时间复杂度是常量级别。常见的哈希函数有除余法和乘法哈希法。
class HashTable:
def __init__(self):
self.capacity = 100
self.table = [[] for _ in range(self.capacity)]
def _hash(self, key):
return key % self.capacity
def put(self, key, value):
index = self._hash(key)
for kvp in self.table[index]:
if kvp[0] == key:
kvp[1] = value
return
self.table[index].append([key, value])
def get(self, key):
index = self._hash(key)
for kvp in self.table[index]:
if kvp[0] == key:
return kvp[1]
return None
class HashTable:
def __init__(self):
self.capacity = 100
self.table = [[] for _ in range(self.capacity)]
self.a = 0.6180339887
def _hash(self, key):
return int((self.a * key % 1) * self.capacity)
def put(self, key, value):
index = self._hash(key)
for kvp in self.table[index]:
if kvp[0] == key:
kvp[1] = value
return
self.table[index].append([key, value])
def get(self, key):
index = self._hash(key)
for kvp in self.table[index]:
if kvp[0] == key:
return kvp[1]
return None
图(Graph)是一种由节点和边组成的数据结构,在图中,节点表示实体,边表示这些实体之间的关系,可以表示复杂的任意结构。常见的图包括有向图和无向图,有些图可能带有权值。
class Graph:
def __init__(self, vertices):
self.adj_list = {}
for vertex in vertices:
self.adj_list[vertex] = []
def add_edge(self, u, v):
self.adj_list[u].append(v)
self.adj_list[v].append(u)
def remove_edge(self, u, v):
self.adj_list[u].remove(v)
self.adj_list[v].remove(u)
def dfs(self, v, visited=None):
if visited is None:
visited = set()
visited.add(v)
print(v, end=' ')
for neighbor in self.adj_list[v]:
if neighbor not in visited:
self.dfs(neighbor, visited)
def bfs(self, v):
visited = set()
queue = []
queue.append(v)
visited.add(v)
while queue:
s = queue.pop(0)
print(s, end=' ')
for neighbor in self.adj_list[s]:
if neighbor not in visited:
queue.append(neighbor)
visited.add(neighbor)
class Graph:
def __init__(self, vertices):
self.adj_list = {}
for vertex in vertices:
self.adj_list[vertex] = []
def add_edge(self, u, v):
self.adj_list[u].append(v)
def remove_edge(self, u, v):
self.adj_list[u].remove(v)
def dfs(self, v, visited=None):
if visited is None:
visited = set()
visited.add(v)
print(v, end=' ')
for neighbor in self.adj_list[v]:
if neighbor not in visited:
self.dfs(neighbor, visited)
def bfs(self, v):
visited = set()
queue = []
queue.append(v)
visited.add(v)
while queue:
s = queue.pop(0)
print(s, end=' ')
for neighbor in self.adj_list[s]:
if neighbor not in visited:
queue.append(neighbor)
visited.add(neighbor)
其中,快速排序和深度优先搜索是非常常见的算法。
快速排序(Quick Sort)是一种基于比较的排序算法。其基本思路是选取一个基准值,将数组分成小于基准值和大于基准值两部分,然后递归快速排序左右两部分,直到数组有序。
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = []
right = []
for i in range(1, len(arr)):
if arr[i] < pivot:
left.append(arr[i])
else:
right.append(arr[i])
return quick_sort(left) + [pivot] + quick_sort(right)
深度优先搜索(Depth First Search,DFS)是一种遍历树和图的算法。其基本思路是从图的某个节点出发,依次访问它的所有子节点,一直搜索到最深处,然后回溯到上一层。可以用递归或堆栈来实现。
class Graph:
def __init__(self, vertices):
self.adj_list = {}
for vertex in vertices:
self.adj_list[vertex] = []
def add_edge(self, u, v):
self.adj_list[u].append(v)
self.adj_list[v].append(u)
def dfs(self, v, visited=None):
if visited is None:
visited = set()
visited.add(v)
print(v, end=' ')
for neighbor in self.adj_list[v]:
if neighbor not in visited:
self.dfs(neighbor, visited)
以上介绍了 Adobe 面试中可能出现的一些计算机科学问题,包括数据结构和排序算法等。合理掌握这些知识可以在面试中脱颖而出,进一步提高面试的成功率。