📅  最后修改于: 2023-12-03 15:17:11.437000             🧑  作者: Mango
The label_map_util.get_label_map_dict()
is a function in the label_map_util
module of TensorFlow Object Detection API, which is used to convert a label map into a dictionary format.
The syntax of the label_map_util.get_label_map_dict()
function is:
label_map_dict = label_map_util.get_label_map_dict(label_map)
where label_map
is the path to the label map file and label_map_dict
is the dictionary containing the label map information.
The label_map_util.get_label_map_dict()
function returns a Python dictionary that contains label information in the format:
{
1: {'id': 1, 'name': 'label1'},
2: {'id': 2, 'name': 'label2'},
...
n: {'id': n, 'name': 'labeln'}
}
n
represents the number of classes in the label map file and id
and name
represent the class ID and class name, respectively.
An example usage of the label_map_util.get_label_map_dict()
function with a label map file label_map.pbtxt
is:
from object_detection.utils import label_map_util
label_map = 'label_map.pbtxt'
label_map_dict = label_map_util.get_label_map_dict(label_map)
print(label_map_dict)
Output:
{1: {'id': 1, 'name': 'label1'}, 2: {'id': 2, 'name': 'label2'}, 3: {'id': 3, 'name': 'label3'}}
Note that this example assumes that there are three labels (ID 1, ID 2, and ID 3) in the label map file, with the names "label1", "label2", and "label3", respectively.
In summary, the label_map_util.get_label_map_dict()
function is an important utility function in the TensorFlow Object Detection API for converting a label map file into a dictionary format that can be easily used for object detection tasks.