📜  转换 base64 抖动相机图像 (1)

📅  最后修改于: 2023-12-03 15:28:15.090000             🧑  作者: Mango

转换 base64 抖动相机图像

在移动应用程序中,经常有需要获取用户的照片,但是由于用户的手抖动、光线不足或者摄像头问题等原因,导致照片模糊或者偏色。为了处理这种情况,可以使用抖动处理技术对相机图像进行优化处理。同时,为了方便传输储存和处理,需要将图片转换成base64格式。

本文将介绍如何使用Python处理抖动相机图像,并将结果转换成base64格式。

安装必要的库

在开始之前,我们需要安装必要的库。请确保您已经安装了Python和pip。使用以下命令安装所需的库:

pip install opencv-python numpy pillow

这里我们需要安装opencv-python、numpy和pillow。

抖动处理

下面是使用opencv-python库实现抖动处理的简单代码,代码中使用了一个8*8的像素矩阵。

import cv2
import numpy as np

def dither(image):
    thresh = 100
    img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    rows, cols = img_gray.shape
    block_8x8 = np.zeros((8, 8))

    for row in range(rows//8):
        for col in range(cols//8):
            block_8x8 = img_gray[row*8:(row+1)*8, col*8:(col+1)*8]

            for i in range(8):
                for j in range(8):
                    old_color = block_8x8[i][j]
                    new_color = 255 if old_color > thresh else 0
                    error = old_color - new_color
                    block_8x8[i][j] = new_color

                    if col!= cols//8-1 and j!= 7:
                        block_8x8[i][j+1] += 7/16*error
                    if col!=0 and row!= rows//8-1 and j!=0:
                        block_8x8[i+1][j-1] += 3/16*error
                    if row!= rows//8-1 and j!=0:
                        block_8x8[i+1][j] += 5/16*error
                    if col!= cols//8-1 and row!= rows//8-1 and j!=7:
                        block_8x8[i+1][j+1] += 1/16*error

            img_gray[row*8:(row+1)*8, col*8:(col+1)*8] = block_8x8

    return cv2.cvtColor(img_gray, cv2.COLOR_GRAY2BGR)
图像转换成base64格式

下面是使用pillow库实现将图片转换成base64格式的简单代码:

from io import BytesIO
from PIL import Image
import base64

def image_to_base64(image):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode('ascii')
将抖动图像转换成base64格式

最后,我们将把两个函数组合起来,实现将抖动图像转换成base64格式的功能。

import cv2
import numpy as np
from io import BytesIO
from PIL import Image
import base64

def dither(image):
    thresh = 100
    img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    rows, cols = img_gray.shape
    block_8x8 = np.zeros((8, 8))

    for row in range(rows//8):
        for col in range(cols//8):
            block_8x8 = img_gray[row*8:(row+1)*8, col*8:(col+1)*8]

            for i in range(8):
                for j in range(8):
                    old_color = block_8x8[i][j]
                    new_color = 255 if old_color > thresh else 0
                    error = old_color - new_color
                    block_8x8[i][j] = new_color

                    if col!= cols//8-1 and j!= 7:
                        block_8x8[i][j+1] += 7/16*error
                    if col!=0 and row!= rows//8-1 and j!=0:
                        block_8x8[i+1][j-1] += 3/16*error
                    if row!= rows//8-1 and j!=0:
                        block_8x8[i+1][j] += 5/16*error
                    if col!= cols//8-1 and row!= rows//8-1 and j!=7:
                        block_8x8[i+1][j+1] += 1/16*error

            img_gray[row*8:(row+1)*8, col*8:(col+1)*8] = block_8x8

    return cv2.cvtColor(img_gray, cv2.COLOR_GRAY2BGR)


def image_to_base64(image):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode('ascii')


def convert_image(image_path):
    image = cv2.imread(image_path)
    dither_image = dither(image)
    pil_image = Image.fromarray(dither_image)
    base64_image = image_to_base64(pil_image)
    return base64_image
结论

使用以上代码,您可以方便地从抖动相机图像中生成具有优化效果的图片,并将其转换成base64格式在移动应用程序中进行传输储存和处理。