📅  最后修改于: 2023-12-03 15:34:28.268000             🧑  作者: Mango
如果您需要将PyTorch模型部署到移动设备或者嵌入式设备上,那么压缩PyTorch模型可能是一个很好的选择。压缩模型可以减小模型的大小,降低模型的存储和传输成本,并加速模型的推理过程。本文将介绍如何使用PyTorch提供的工具来压缩PyTorch模型。
import torch
import torch.nn as nn
import torch.optim as optim
class Net(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(Net, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
out = self.fc1(x)
out = self.relu1(out)
out = self.fc2(out)
out = self.softmax(out)
return out
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
input_size = 20
hidden_size = 10
output_size = 2
model = Net(input_size, hidden_size, output_size).to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Train the model
for epoch in range(10):
optimizer.zero_grad()
x = torch.randn(100, input_size).to(device)
y = torch.randint(output_size, size=(100,)).to(device)
outputs = model(x)
loss = nn.CrossEntropyLoss()(outputs, y)
loss.backward()
optimizer.step()
# Save the model
torch.save(model.state_dict(), "model.pth")
上述代码创建了一个简单的神经网络模型,训练并保存了该模型。
在 PyTorch 中,有多种方法可以压缩模型,本文将介绍两种常用的方法:剪枝和量化。
剪枝是一种减少模型参数总量的方法,其实现方法是将模型中参数值较小的连接删除。
使用 PyTorch 实现剪枝的步骤如下:
model = Net(input_size, hidden_size, output_size).to(device)
model.load_state_dict(torch.load('model.pth'))
from torch.nn.utils.prune import L1Unstructured, RandomUnstructured
def prune_model(model, pruning_method):
if pruning_method == "l1":
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
L1Unstructured.apply(module, 'weight', amount=0.2)
elif pruning_method == "random":
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
RandomUnstructured.apply(module, 'weight', amount=0.2)
else:
raise ValueError("Invalid pruning method.")
上述代码定义了两种剪枝方法: L1 剪枝和随机剪枝,其中 L1 剪枝会剪掉每层权重值绝对值最小的权重,随机剪枝会随机剪掉某些权重。
prune_method = "l1" # 使用 L1 剪枝
prune_model(model, prune_method)
torch.save(model.state_dict(), "{}_pruned_{}.pth".format(prune_method, "model"))
上述代码使用 L1 剪枝方法压缩模型,并保存压缩后的模型。
量化是一种减少模型存储空间和计算时间的方法,其实现方法是减小模型中参数的精度。
使用 PyTorch 实现量化的步骤如下:
model = Net(input_size, hidden_size, output_size).to(device)
model.load_state_dict(torch.load('model.pth'))
from torch.quantization import QuantStub, DeQuantStub
from torch.quantization import Quantize, DeQuantize
def quantize_model(model):
quantize = QuantStub()
dequantize = DeQuantStub()
def fuse_module(module):
if type(module) == nn.Sequential:
children = list(module.children())
for i in range(len(children)):
if type(children[i]) == nn.Conv2d and \
i + 1 < len(children) and \
type(children[i + 1]) == nn.BatchNorm2d:
conv = children[i]
bn = children[i + 1]
fused_conv_bn = nn.Sequential(
nn.Conv2d(conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
bias=True if conv.bias is not None else False),
nn.BatchNorm2d(conv.out_channels,
eps=bn.eps,
momentum=bn.momentum,
affine=bn.affine,
track_running_stats=bn.track_running_stats)
)
fused_conv_bn[0].weight = nn.parameter.Parameter(torch.cat([conv.weight, conv.bias.reshape(-1, 1, 1, 1)], dim=1))
if conv.bias is not None:
fused_conv_bn[0].bias = nn.parameter.Parameter(conv.bias, requires_grad=False)
fused_conv_bn[-1].weight = nn.parameter.Parameter(bn.weight, requires_grad=False)
fused_conv_bn[-1].bias = nn.parameter.Parameter(bn.bias, requires_grad=False)
children[i] = fused_conv_bn
children.pop(i + 1)
break
for i, child in enumerate(children):
children[i] = fuse_module(child)
return nn.Sequential(*children)
else:
return module
model = fuse_module(model)
model.qconfig = torch.quantization.default_qconfig
torch.quantization.prepare(model, inplace=True)
model = nn.Sequential(quantize, model, dequantize)
model.eval()
return model
上述代码定义了量化器,其中将 Conv2d 和 BatchNorm2d 合并为一个单一的操作。
quant_model = quantize_model(model)
quant_model.eval()
accuracy = test_model(quant_model)
print("Accuracy:", accuracy.item())
torch.save(quant_model.state_dict(), "quantized_model.pth")
上述代码使用量化器压缩模型,并保存压缩后的模型。
本文介绍了如何使用 PyTorch 实现模型压缩的两种方法:剪枝和量化。在实际应用中,可以根据具体需求选择合适的压缩方法,以获得更小、更快、更精确的神经网络模型。