Python中的 Matplotlib.axes.Axes.get_transform()
Matplotlib是Python中的一个库,它是 NumPy 库的数值数学扩展。 Axes 类包含大部分图形元素:Axis、Tick、Line2D、Text、Polygon 等,并设置坐标系。 Axes 的实例通过回调属性支持回调。
matplotlib.axes.Axes.get_transform()函数
matplotlib库的axes模块中的axes.get_transform()函数用于获取该艺术家使用的Transform实例
Syntax: Axes.get_transform(self)
Parameters: This method does not accepts any parameter.
Returns: This method return the Transform instance used by this artist
下面的示例说明了 matplotlib.axes 中的 matplotlib.axes.Axes.get_transform()函数:
示例 1:
# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
fig, ax = plt.subplots()
l1, = ax.plot([0.1, 0.5, 0.9], [0.1, 0.9, 0.5], "bo-")
l2, = ax.plot([0.1, 0.5, 0.9], [0.5, 0.2, 0.7], "ro-")
for l in [l1, l2]:
xx = l.get_xdata()
yy = l.get_ydata()
shadow, = ax.plot(xx, yy)
shadow.update_from(l)
ot = mtransforms.offset_copy(l.get_transform(),
ax.figure,
x = 4.0, y =-6.0,
units ='points')
shadow.set_transform(ot)
fig.suptitle('matplotlib.axes.Axes.get_transform() \
function Example', fontweight ="bold")
plt.show()
输出:
示例 2:
# Implementation of matplotlib function
import matplotlib.pyplot as plt
from matplotlib import collections, colors, transforms
import numpy as np
nverts = 50
npts = 100
r = np.arange(nverts)
theta = np.linspace(0, 2 * np.pi, nverts)
xx = r * np.sin(theta)
yy = r * np.cos(theta)
spiral = np.column_stack([xx, yy])
rs = np.random.RandomState(19680801)
xyo = rs.randn(npts, 2)
colors = [colors.to_rgba(c)
for c in plt.rcParams['axes.prop_cycle'].by_key()['color']]
fig, ax1 = plt.subplots()
col = collections.RegularPolyCollection(
7, sizes = np.abs(xx) * 10.0,
offsets = xyo,
transOffset = ax1.transData)
trans = transforms.Affine2D().scale(fig.dpi / 72.0)
col.set_transform(trans)
ax1.add_collection(col, autolim = True)
col.set_color(colors)
print("Value Return by get_transform() :\n",
col.get_transform())
fig.suptitle('matplotlib.axes.Axes.get_transform() \
function Example', fontweight ="bold")
plt.show()
输出:
Value Return by get_transform() :
Affine2D(
[[1.38888889 0. 0. ]
[0. 1.38888889 0. ]
[0. 0. 1. ]])