按元素获取 NumPy 数组值的幂
NumPy 是一个强大的 N 维数组对象,它用于线性代数、傅里叶变换和随机数功能。它提供的数组对象比传统的Python列表快得多。 numpy.power() 用于计算元素的幂。它按元素处理从第二个数组提升到幂的第一个数组元素。
Syntax: numpy.power(arr1, arr2, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None)
Parameters :
arr1 : [array_like]Input array or object which works as base.
arr2 : [array_like]Input array or object which works as exponent.
out : [ndarray, optional]Output array with same dimensions as Input array,
placed with result.
**kwargs : Allows you to pass keyword variable length of argument to a function.
It is used when we want to handle named argument in a function.
where : [array_like, optional]True value means to calculate the universal
functions(ufunc) at that position, False value means to leave the
value in the output alone.
因此,让我们讨论一些与获取数组功能相关的示例。
示例 1:计算具有不同元素值的数组的幂。
Python3
# import required modules
import numpy as np
# creating the array
sample_array1 = np.arange(5)
sample_array2 = np.arange(0, 10, 2)
print("Original array ")
print("array1 ", sample_array1)
print("array2 ", sample_array2)
# calculating element-wise power
power_array = np.power(sample_array1, sample_array2)
print("power to the array1 and array 2 : ", power_array)
Python3
# import required module
import numpy as np
# creating the array
array = np.arange(8)
print("Original array")
print(array)
# computing the power of array
print("power of 3 for every element-wise:")
print(np.power(array, 3))
Python3
# import required modules
import numpy as np
# creating the array
sample_array1 = np.arange(5)
# initialization the decimal number
sample_array2 = [1.0, 2.0, 3.0, 3.0, 2.0]
print("Original array ")
print("array1 ", sample_array1)
print("array2 ", sample_array2)
# calculating element-wise power
power_array = np.power(sample_array1, sample_array2)
print("power to the array1 and array 2 : ", power_array)
Python3
# importing module
import numpy as np
# creating the array
array = np.arange(8)
print("Original array")
print(array)
print("power of 3 for every element-wise:")
# computing the negative power element
print(np.power(array, -3))
输出:
Original array
array1 [0 1 2 3 4]
array2 [0 2 4 6 8]
power to the array1 and array 2 : [ 1 1 16 729 65536]
示例 2:为数组中的每个元素计算相同的幂。
Python3
# import required module
import numpy as np
# creating the array
array = np.arange(8)
print("Original array")
print(array)
# computing the power of array
print("power of 3 for every element-wise:")
print(np.power(array, 3))
输出:
Original array
[0 1 2 3 4 5 6 7]
power of 3 for every element-wise:
[ 0 1 8 27 64 125 216 343]
示例 3:计算十进制值的幂。
Python3
# import required modules
import numpy as np
# creating the array
sample_array1 = np.arange(5)
# initialization the decimal number
sample_array2 = [1.0, 2.0, 3.0, 3.0, 2.0]
print("Original array ")
print("array1 ", sample_array1)
print("array2 ", sample_array2)
# calculating element-wise power
power_array = np.power(sample_array1, sample_array2)
print("power to the array1 and array 2 : ", power_array)
输出:
Original array
array1 [0 1 2 3 4]
array2 [1.0, 2.0, 3.0, 3.0, 2.0]
power to the array1 and array 2 : [ 0. 1. 8. 27. 16.]
注意:你不能计算负功率
示例 4:
Python3
# importing module
import numpy as np
# creating the array
array = np.arange(8)
print("Original array")
print(array)
print("power of 3 for every element-wise:")
# computing the negative power element
print(np.power(array, -3))
输出: