📜  NumPy-数组属性

📅  最后修改于: 2020-11-08 07:33:37             🧑  作者: Mango


在本章中,我们将讨论NumPy的各种数组属性。

ndarray.shape

此数组属性返回一个由数组维组成的元组。它也可以用来调整数组的大小。

例子1

import numpy as np 
a = np.array([[1,2,3],[4,5,6]]) 
print a.shape

输出如下-

(2, 3)

例子2

# this resizes the ndarray 
import numpy as np 

a = np.array([[1,2,3],[4,5,6]]) 
a.shape = (3,2) 
print a 

输出如下-

[[1, 2] 
 [3, 4] 
 [5, 6]]

例子3

NumPy还提供了一种调整形状函数以调整数组大小。

import numpy as np 
a = np.array([[1,2,3],[4,5,6]]) 
b = a.reshape(3,2) 
print b

输出如下-

[[1, 2] 
 [3, 4] 
 [5, 6]]

ndarray.ndim

此数组属性返回数组维数。

例子1

# an array of evenly spaced numbers 
import numpy as np 
a = np.arange(24) 
print a

输出如下-

[0 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 17 18 19 20 21 22 23] 

例子2

# this is one dimensional array 
import numpy as np 
a = np.arange(24) 
a.ndim  

# now reshape it 
b = a.reshape(2,4,3) 
print b 
# b is having three dimensions

输出如下-

[[[ 0,  1,  2] 
  [ 3,  4,  5] 
  [ 6,  7,  8] 
  [ 9, 10, 11]]  
  [[12, 13, 14] 
   [15, 16, 17]
   [18, 19, 20] 
   [21, 22, 23]]] 

numpy.itemsize

此数组属性返回数组每个元素的长度(以字节为单位)。

例子1

# dtype of array is int8 (1 byte) 
import numpy as np 
x = np.array([1,2,3,4,5], dtype = np.int8) 
print x.itemsize

输出如下-

1

例子2

# dtype of array is now float32 (4 bytes) 
import numpy as np 
x = np.array([1,2,3,4,5], dtype = np.float32) 
print x.itemsize

输出如下-

4

numpy.flags

ndarray对象具有以下属性。此函数返回其当前值。

Sr.No. Attribute & Description
1

C_CONTIGUOUS (C)

The data is in a single, C-style contiguous segment

2

F_CONTIGUOUS (F)

The data is in a single, Fortran-style contiguous segment

3

OWNDATA (O)

The array owns the memory it uses or borrows it from another object

4

WRITEABLE (W)

The data area can be written to. Setting this to False locks the data, making it read-only

5

ALIGNED (A)

The data and all elements are aligned appropriately for the hardware

6

UPDATEIFCOPY (U)

This array is a copy of some other array. When this array is deallocated, the base array will be updated with the contents of this array

下面的示例显示标志的当前值。

import numpy as np 
x = np.array([1,2,3,4,5]) 
print x.flags

输出如下-

C_CONTIGUOUS : True 
F_CONTIGUOUS : True 
OWNDATA : True 
WRITEABLE : True 
ALIGNED : True 
UPDATEIFCOPY : False