给定一个由N个正整数组成的数组arr [] ,任务是从给定数组中查找需要用其LCM替换的最小对数(arr [i],arr [j]) ,从而减少该数组等于与初始数组的LCM相等的单个元素。
例子:
Input: arr[] = {1, 2, 3, 4}
Output: 3
Explanation:
LCM of the array = 12
Step 1: LCM(3, 4) = 12. Therefore array is modified to {1, 2, 12}
Step 2: LCM(1, 12) = 12. Therefore array is modified to {2, 12}
Step 3: LCM(2, 12) = 12. Therefore array is modified to {12}
Input: arr[] = {7, 9, 3}
Output: 2
Explanation:
LCM of the array = 63
Step 1: LCM(7, 9) = 63. Therefore array is modified to {63, 3}
Step 2: LCM(63, 3) = 63. Therefore array is modified to {63}
天真的方法:想法是生成所有可能的对,并用每对LCM替换它们,并计算将其缩减为等于其LCM的单个数组元素所需的步骤数。打印所需的最少操作数。
时间复杂度: O((N!)* log N)
辅助空间: O(N)
高效的方法:可以基于以下观察来优化上述方法:
- 数组的LCM等于数组中所有质数的乘积。
- 在(X – 1)步中,可以使用两个数字成对获得所有X个质数的LCM。
- 在接下来的(N – 2)个步骤中,转换其余(N – 2)个元素等于数组的LCM。
- 因此,步骤总数由下式给出:
(N – 2) + (X – 1) for N > 2
- 对于N = 1 ,操作数仅为0 ,对于N = 2 ,操作数为1 。
脚步:
- 如果N = 1,则步数为0 。
- 如果N = 2,则步数为1 。
- 使用Eratosthenes筛生成所有素数,直至N。
- 将素数计数存储在变量中,例如X。
- 总操作数由下式给出:
(N – 2) + (X – 1) for N > 2
下面是上述方法的实现:
C++
// C++ program for the above approach
#include
using namespace std;
const int maxm = 10001;
// Boolean array to set or unset
// prime non-prime indices
bool prime[maxm];
// Stores the prefix sum of the count
// of prime numbers
int prime_number[maxm];
// Function to check if a number
// is prime or not from 0 to N
void SieveOfEratosthenes()
{
memset(prime, true, sizeof(prime));
for (int p = 2; p * p < maxm; p++) {
// If p is a prime
if (prime[p] == true) {
// Set its multiples as
// non-prime
for (int i = p * p; i < maxm;
i += p)
prime[i] = false;
}
}
prime[0] = false;
prime[1] = false;
}
// Function to store the count of
// prime numbers
void num_prime()
{
prime_number[0] = 0;
for (int i = 1; i <= maxm; i++)
prime_number[i]
= prime_number[i - 1]
+ prime[i];
}
// Function to count the operations
// to reduce the array to one element
// by replacing each pair with its LCM
void min_steps(int arr[], int n)
{
// Generating Prime Number
SieveOfEratosthenes();
num_prime();
// Corner Case
if (n == 1)
cout << "0\n";
else if (n == 2)
cout << "1\n";
else
cout << prime_number[n] - 1
+ (n - 2);
}
// Driver Code
int main()
{
// Given array arr[]
int arr[] = { 5, 4, 3, 2, 1 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function Call
min_steps(arr, N);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG{
static final int maxm = 10001;
// Boolean array to set or unset
// prime non-prime indices
static boolean prime[];
// Stores the prefix sum of the count
// of prime numbers
static int prime_number[];
// Function to check if a number
// is prime or not from 0 to N
static void SieveOfEratosthenes()
{
Arrays.fill(prime,true);
for(int p = 2; p * p < maxm; p++)
{
// If p is a prime
if (prime[p] == true)
{
// Set its multiples as
// non-prime
for(int i = p * p; i < maxm; i += p)
prime[i] = false;
}
}
prime[0] = false;
prime[1] = false;
}
// Function to store the count of
// prime numbers
static void num_prime()
{
prime_number[0] = 0;
for(int i = 1; i <= maxm; i++)
{
int tmp;
if(prime[i] == true)
{
tmp = 1;
}
else
{
tmp = 0;
}
prime_number[i] = prime_number[i - 1] + tmp;
}
}
// Function to count the operations
// to reduce the array to one element
// by replacing each pair with its LCM
static void min_steps(int arr[], int n)
{
// Generating Prime Number
SieveOfEratosthenes();
num_prime();
// Corner Case
if (n == 1)
{
System.out.println("0");
}
else if (n == 2)
{
System.out.println("1");
}
else
{
System.out.println(prime_number[n] - 1 +
(n - 2));
}
}
// Driver code
public static void main(String[] args)
{
prime = new boolean[maxm + 1];
// Stores the prefix sum of the count
// of prime numbers
prime_number = new int[maxm + 1];
// Given array arr[]
int arr[] = { 5, 4, 3, 2, 1 };
int N = arr.length;
// Function call
min_steps(arr, N);
}
}
// This code is contributed by rutvik_56
Python3
# Python3 program for
# the above approach
maxm = 10001;
# Boolean array to set or unset
# prime non-prime indices
prime = [True] * (maxm + 1);
# Stores the prefix sum of the count
# of prime numbers
prime_number = [0] * (maxm + 1);
# Function to check if a number
# is prime or not from 0 to N
def SieveOfEratosthenes():
for p in range(2, (int(maxm ** 1 / 2))):
# If p is a prime
if (prime[p] == True):
# Set its multiples as
# non-prime
for i in range(p * p, maxm, p):
prime[i] = False;
prime[0] = False;
prime[1] = False;
# Function to store the count of
# prime numbers
def num_prime():
prime_number[0] = 0;
for i in range(1, maxm + 1):
tmp = -1;
if (prime[i] == True):
tmp = 1;
else:
tmp = 0;
prime_number[i] = prime_number[i - 1] + tmp;
# Function to count the operations
# to reduce the array to one element
# by replacing each pair with its LCM
def min_steps(arr, n):
# Generating Prime Number
SieveOfEratosthenes();
num_prime();
# Corner Case
if (n == 1):
print("0");
elif (n == 2):
print("1");
else:
print(prime_number[n] - 1 + (n - 2));
# Driver code
if __name__ == '__main__':
# Given array arr
arr = [5, 4, 3, 2, 1];
N = len(arr);
# Function call
min_steps(arr, N);
# This code is contributed by Rajput-Ji
C#
// C# program for the above approach
using System;
class GFG{
static readonly int maxm = 10001;
// Boolean array to set or unset
// prime non-prime indices
static bool []prime;
// Stores the prefix sum of the count
// of prime numbers
static int []prime_number;
// Function to check if a number
// is prime or not from 0 to N
static void SieveOfEratosthenes()
{
for(int i = 0; i < prime.Length; i++)
prime[i] = true;
for(int p = 2; p * p < maxm; p++)
{
// If p is a prime
if (prime[p] == true)
{
// Set its multiples as
// non-prime
for(int i = p * p; i < maxm;
i += p)
prime[i] = false;
}
}
prime[0] = false;
prime[1] = false;
}
// Function to store the count of
// prime numbers
static void num_prime()
{
prime_number[0] = 0;
for(int i = 1; i <= maxm; i++)
{
int tmp;
if(prime[i] == true)
{
tmp = 1;
}
else
{
tmp = 0;
}
prime_number[i] = prime_number[i - 1] +
tmp;
}
}
// Function to count the operations
// to reduce the array to one element
// by replacing each pair with its LCM
static void min_steps(int []arr, int n)
{
// Generating Prime Number
SieveOfEratosthenes();
num_prime();
// Corner Case
if (n == 1)
{
Console.WriteLine("0");
}
else if (n == 2)
{
Console.WriteLine("1");
}
else
{
Console.WriteLine(prime_number[n] - 1 +
(n - 2));
}
}
// Driver code
public static void Main(String[] args)
{
prime = new bool[maxm + 1];
// Stores the prefix sum of the count
// of prime numbers
prime_number = new int[maxm + 1];
// Given array []arr
int []arr = {5, 4, 3, 2, 1};
int N = arr.Length;
// Function call
min_steps(arr, N);
}
}
// This code is contributed by Rajput-Ji
Javascript
5
时间复杂度: O(N + log(log(maxm))
辅助空间: O(maxm)