给定n个约会,找到所有有冲突的约会。
例子:
Input: appointments[] = { {1, 5} {3, 7}, {2, 6}, {10, 15}, {5, 6}, {4, 100}}
Output: Following are conflicting intervals
[3,7] Conflicts with [1,5]
[2,6] Conflicts with [1,5]
[5,6] Conflicts with [3,7]
[4,100] Conflicts with [1,5]
如果约会与数组中的任何先前约会冲突,则该约会有冲突。
强烈建议您最小化浏览器,然后自己尝试。
一个简单的解决方案是从第二个约会到最后一个约会一个接一个地处理所有约会。对于每个约会i,检查它是否与i-1,i-2,…0冲突。此方法的时间复杂度为O(n 2 )。
我们可以使用间隔树在O(nLogn)时间内解决此问题。以下是详细的算法。
1) Create an Interval Tree, initially with the first appointment.
2) Do following for all other appointments starting from the second one.
a) Check if the current appointment conflicts with any of the existing
appointments in Interval Tree. If conflicts, then print the current
appointment. This step can be done O(Logn) time.
b) Insert the current appointment in Interval Tree. This step also can
be done O(Logn) time.
以下是上述想法的实现。
C++
// C++ program to print all conflicting appointments in a
// given set of appointments
#include
using namespace std;
// Structure to represent an interval
struct Interval
{
int low, high;
};
// Structure to represent a node in Interval Search Tree
struct ITNode
{
Interval *i; // 'i' could also be a normal variable
int max;
ITNode *left, *right;
};
// A utility function to create a new Interval Search Tree Node
ITNode * newNode(Interval i)
{
ITNode *temp = new ITNode;
temp->i = new Interval(i);
temp->max = i.high;
temp->left = temp->right = NULL;
};
// A utility function to insert a new Interval Search Tree
// Node. This is similar to BST Insert. Here the low value
// of interval is used tomaintain BST property
ITNode *insert(ITNode *root, Interval i)
{
// Base case: Tree is empty, new node becomes root
if (root == NULL)
return newNode(i);
// Get low value of interval at root
int l = root->i->low;
// If root's low value is smaller, then new interval
// goes to left subtree
if (i.low < l)
root->left = insert(root->left, i);
// Else, new node goes to right subtree.
else
root->right = insert(root->right, i);
// Update the max value of this ancestor if needed
if (root->max < i.high)
root->max = i.high;
return root;
}
// A utility function to check if given two intervals overlap
bool doOVerlap(Interval i1, Interval i2)
{
if (i1.low < i2.high && i2.low < i1.high)
return true;
return false;
}
// The main function that searches a given interval i
// in a given Interval Tree.
Interval *overlapSearch(ITNode *root, Interval i)
{
// Base Case, tree is empty
if (root == NULL) return NULL;
// If given interval overlaps with root
if (doOVerlap(*(root->i), i))
return root->i;
// If left child of root is present and max of left child
// is greater than or equal to given interval, then i may
// overlap with an interval is left subtree
if (root->left != NULL && root->left->max >= i.low)
return overlapSearch(root->left, i);
// Else interval can only overlap with right subtree
return overlapSearch(root->right, i);
}
// This function prints all conflicting appointments in a given
// array of apointments.
void printConflicting(Interval appt[], int n)
{
// Create an empty Interval Search Tree, add first
// appointment
ITNode *root = NULL;
root = insert(root, appt[0]);
// Process rest of the intervals
for (int i=1; ilow << ","
<< res->high << "]\n";
// Insert this appointment
root = insert(root, appt[i]);
}
}
// Driver program to test above functions
int main()
{
// Let us create interval tree shown in above figure
Interval appt[] = { {1, 5}, {3, 7}, {2, 6}, {10, 15},
{5, 6}, {4, 100}};
int n = sizeof(appt)/sizeof(appt[0]);
cout << "Following are conflicting intervals\n";
printConflicting(appt, n);
return 0;
}
Java
// Java program to print all conflicting
// appointments in a given set of appointments
class GfG{
// Structure to represent an interval
static class Interval
{
int low, high;
}
static class ITNode
{
// 'i' could also be a normal variable
Interval i;
int max;
ITNode left, right;
}
// A utility function to create a new node
static Interval newNode(int l, int h)
{
Interval temp = new Interval();
temp.low = l;
temp.high = h;
return temp;
}
// A utility function to create a new node
static ITNode newNode(Interval i)
{
ITNode temp = new ITNode();
temp.i = i;
temp.max = i.high;
temp.left = temp.right = null;
return temp;
}
// A utility function to insert a new
// Interval Search Tree Node. This is
// similar to BST Insert. Here the
// low value of interval is used to
// maintain BST property
static ITNode insert(ITNode root, Interval i)
{
// Base case: Tree is empty,
// new node becomes root
if (root == null)
return newNode(i);
// Get low value of interval at root
int l = root.i.low;
// If root's low value is smaller,
// then new interval goes to left subtree
if (i.low < l)
root.left = insert(root.left, i);
// Else, new node goes to right subtree.
else
root.right = insert(root.right, i);
// Update the max value of this
// ancestor if needed
if (root.max < i.high)
root.max = i.high;
return root;
}
// A utility function to check if given
// two intervals overlap
static boolean doOVerlap(Interval i1, Interval i2)
{
if (i1.low < i2.high && i2.low < i1.high)
return true;
return false;
}
// The main function that searches a given
// interval i in a given Interval Tree.
static Interval overlapSearch(ITNode root,
Interval i)
{
// Base Case, tree is empty
if (root == null)
return null;
// If given interval overlaps with root
if (doOVerlap(root.i, i))
return root.i;
// If left child of root is present
// and max of left child is greater
// than or equal to given interval,
// then i may overlap with an interval
// is left subtree
if (root.left != null &&
root.left.max >= i.low)
return overlapSearch(root.left, i);
// Else interval can only
// overlap with right subtree
return overlapSearch(root.right, i);
}
// This function prints all conflicting
// appointments in a given array of apointments.
static void printConflicting(Interval appt[], int n)
{
// Create an empty Interval Search
// Tree, add first appointment
ITNode root = null;
root = insert(root, appt[0]);
// Process rest of the intervals
for(int i = 1; i < n; i++)
{
// If current appointment conflicts
// with any of the existing intervals,
// print it
Interval res = overlapSearch(root, appt[i]);
if (res != null)
System.out.print("[" + appt[i].low +
"," + appt[i].high +
"] Conflicts with [" +
res.low + "," +
res.high + "]\n");
// Insert this appointment
root = insert(root, appt[i]);
}
}
// Driver code
public static void main(String[] args)
{
Interval appt[] = new Interval[6];
appt[0] = newNode(1, 5);
appt[1] = newNode(3, 7);
appt[2] = newNode(2, 6);
appt[3] = newNode(10, 15);
appt[4] = newNode(5, 6);
appt[5] = newNode(4, 100);
int n = appt.length;
System.out.print(
"Following are conflicting intervals\n");
printConflicting(appt, n);
}
}
// This code is contributed by tushar_bansal
Python3
# Python3 program to print all conflicting
# appointments in a given set of appointments
# Structure to represent an interval
class Interval:
def __init__(self):
self.low = None
self.high = None
# Structure to represent a node
# in Interval Search Tree
class ITNode:
def __init__(self):
self.max = None
self.i = None
self.left = None
self.right = None
def newNode(j):
#print(j)
temp = ITNode()
temp.i = j
temp.max = j[1]
return temp
# A utility function to check if
# given two intervals overlap
def doOVerlap(i1, i2):
if (i1[0] < i2[1] and i2[0] < i1[1]):
return True
return False
# Function to create a new node
def insert(node, data):
global succ
# If the tree is empty, return a new node
root = node
if (node == None):
return newNode(data)
# If key is smaller than root's key, go to left
# subtree and set successor as current node
# print(node)
if (data[0] < node.i[0]):
# print(node)
root.left = insert(node.left, data)
# Go to right subtree
else:
root.right = insert(node.right, data)
if root.max < data[1]:
root.max = data[1]
return root
# The main function that searches a given
# interval i in a given Interval Tree.
def overlapSearch(root, i):
# Base Case, tree is empty
if (root == None):
return None
# If given interval overlaps with root
if (doOVerlap(root.i, i)):
return root.i
# If left child of root is present and
# max of left child is greater than or
# equal to given interval, then i may
# overlap with an interval is left subtree
if (root.left != None and root.left.max >= i[0]):
return overlapSearch(root.left, i)
# Else interval can only overlap
# with right subtree
return overlapSearch(root.right, i)
# This function prints all conflicting
# appointments in a given array of
# apointments.
def printConflicting(appt, n):
# Create an empty Interval Search Tree,
# add first appointment
root = None
root = insert(root, appt[0])
# Process rest of the intervals
for i in range(1, n):
# If current appointment conflicts
# with any of the existing intervals,
# print it
res = overlapSearch(root, appt[i])
if (res != None):
print("[", appt[i][0], ",", appt[i][1],
"] Conflicts with [", res[0],
",", res[1], "]")
# Insert this appointment
root = insert(root, appt[i])
# Driver code
if __name__ == '__main__':
# Let us create interval tree
# shown in above figure
appt = [ [ 1, 5 ], [ 3, 7 ],
[ 2, 6 ], [ 10, 15 ],
[ 5, 6 ], [ 4, 100 ] ]
n = len(appt)
print("Following are conflicting intervals")
printConflicting(appt, n)
# This code is contributed by mohit kumar 29
C#
// C# program to print all conflicting
// appointments in a given set of appointments
using System;
public class GfG
{
// Structure to represent an interval
public
class Interval
{
public
int low, high;
}
public
class ITNode
{
// 'i' could also be a normal variable
public
Interval i;
public
int max;
public
ITNode left, right;
}
// A utility function to create a new node
static Interval newNode(int l, int h)
{
Interval temp = new Interval();
temp.low = l;
temp.high = h;
return temp;
}
// A utility function to create a new node
static ITNode newNode(Interval i)
{
ITNode temp = new ITNode();
temp.i = i;
temp.max = i.high;
temp.left = temp.right = null;
return temp;
}
// A utility function to insert a new
// Interval Search Tree Node. This is
// similar to BST Insert. Here the
// low value of interval is used to
// maintain BST property
static ITNode insert(ITNode root, Interval i)
{
// Base case: Tree is empty,
// new node becomes root
if (root == null)
return newNode(i);
// Get low value of interval at root
int l = root.i.low;
// If root's low value is smaller,
// then new interval goes to left subtree
if (i.low < l)
root.left = insert(root.left, i);
// Else, new node goes to right subtree.
else
root.right = insert(root.right, i);
// Update the max value of this
// ancestor if needed
if (root.max < i.high)
root.max = i.high;
return root;
}
// A utility function to check if given
// two intervals overlap
static bool doOVerlap(Interval i1, Interval i2)
{
if (i1.low < i2.high && i2.low < i1.high)
return true;
return false;
}
// The main function that searches a given
// interval i in a given Interval Tree.
static Interval overlapSearch(ITNode root,
Interval i)
{
// Base Case, tree is empty
if (root == null)
return null;
// If given interval overlaps with root
if (doOVerlap(root.i, i))
return root.i;
// If left child of root is present
// and max of left child is greater
// than or equal to given interval,
// then i may overlap with an interval
// is left subtree
if (root.left != null &&
root.left.max >= i.low)
return overlapSearch(root.left, i);
// Else interval can only
// overlap with right subtree
return overlapSearch(root.right, i);
}
// This function prints all conflicting
// appointments in a given array of apointments.
static void printConflicting(Interval []appt, int n)
{
// Create an empty Interval Search
// Tree, add first appointment
ITNode root = null;
root = insert(root, appt[0]);
// Process rest of the intervals
for(int i = 1; i < n; i++)
{
// If current appointment conflicts
// with any of the existing intervals,
// print it
Interval res = overlapSearch(root, appt[i]);
if (res != null)
Console.Write("[" + appt[i].low +
"," + appt[i].high +
"] Conflicts with [" +
res.low + "," +
res.high + "]\n");
// Insert this appointment
root = insert(root, appt[i]);
}
}
// Driver code
public static void Main(String[] args)
{
Interval []appt = new Interval[6];
appt[0] = newNode(1, 5);
appt[1] = newNode(3, 7);
appt[2] = newNode(2, 6);
appt[3] = newNode(10, 15);
appt[4] = newNode(5, 6);
appt[5] = newNode(4, 100);
int n = appt.Length;
Console.Write(
"Following are conflicting intervals\n");
printConflicting(appt, n);
}
}
// This code is contributed by gauravrajput1
输出:
Following are conflicting intervals
[3,7] Conflicts with [1,5]
[2,6] Conflicts with [1,5]
[5,6] Conflicts with [3,7]
[4,100] Conflicts with [1,5]
请注意,以上实现使用了简单的二进制搜索树插入操作。因此,以上实现的时间复杂度大于O(nLogn)。我们可以使用Red-Black Tree或AVL Tree平衡技术来使上述实现O(nLogn)。