📜  r最近邻居

📅  最后修改于: 2021-05-30 16:33:13             🧑  作者: Mango

r最近邻居是k最近邻居的修改版本。 k最近邻居的问题是k的选择。较小的k,分类器对异常值更敏感。如果k的值很大,则分类器将包括来自其他类别的许多点。正是基于这种逻辑,我们得到了r近邻算法。

直觉:
考虑以下数据作为训练集。

绿色点属于0类,红色点属于1类。
将白点P视为其查询点

如果我们以圆的半径为2.2单位,并且以点P为圆心绘制一个圆,则绘图如下

由于圆中属于1类的点数(5个点)大于属于0类的点数(2个点)

算法:

r半径邻居算法的实现如下:

C/C++
// C++ program to implement the
// r nearest neighbours algorithm.
#include 
using namespace std;
  
struct Point
{
    // Class of point
    int val; 
      
    // Co-ordinate of point
    double x, y; 
};
  
// This function classifies the point p using
// r k neareast neighbour algorithm. It assumes only
// two groups and returns 0 if p belongs to class 0, else
// 1 (belongs to class 1).
int rNN(Point arr[], int n, float r, Point p)
{
    // frequency of group 0
    int freq1 = 0; 
    // frequency of group 1
    int freq2 = 0; 
  
    // Check if the distance is less than r
    for (int i = 0; i < n; i++)
    {
  
        if ((sqrt((arr[i].x - p.x) * (arr[i].x - p.x) + 
        (arr[i].y - p.y) * (arr[i].y - p.y))) <= r)
        {
            if (arr[i].val == 0)
                freq1++;
            else if (arr[i].val == 1)
                freq2++;
        }
    }
    return (freq1 > freq2 ? 0 : 1);
}
  
// Driver code
int main()
{
    // Number of data points
    int n = 10; 
    Point arr[n];
  
    arr[0].x = 1.5;
    arr[0].y = 4;
    arr[0].val = 0;
  
    arr[1].x = 1.8;
    arr[1].y = 3.8;
    arr[1].val = 0;
  
    arr[2].x = 1.65;
    arr[2].y = 5;
    arr[2].val = 0;
  
    arr[3].x = 2.5;
    arr[3].y = 3.8;
    arr[3].val = 0;
  
    arr[4].x = 3.8;
    arr[4].y = 3.8;
    arr[4].val = 0;
  
    arr[5].x = 5.5;
    arr[5].y = 3.5;
    arr[5].val = 1;
  
    arr[6].x = 5.6;
    arr[6].y = 4.5;
    arr[6].val = 1;
  
    arr[7].x = 6;
    arr[7].y = 5.4;
    arr[7].val = 1;
  
    arr[8].x = 6.2;
    arr[8].y = 4.8;
    arr[8].val = 1;
  
    arr[9].x = 6.4;
    arr[9].y = 4.4;
    arr[9].val = 1;
  
    // Query point
    Point p;
    p.x = 4.5;
    p.y = 4;
  
    // Parameter to decide the class of the query point
    float r = 2.2;
    printf("The value classified to query point"
           " is: %d.\n", rNN(arr, n, r, p));
    return 0;
}


Python3
# Python3 program to implement the 
# r nearest neighbours algorithm. 
import math 
  
def rNN(points, p, r = 2.2): 
        ''' 
        This function classifies the point p using 
        r k neareast neighbour algorithm. It assumes only  
        two groups and returns 0 if p belongs to class 0, else 
        1 (belongs to class 1). 
  
        Parameters - 
                points : Dictionary of training points having two
                         keys - 0 and 1. Each class have a list of
                         training data points belonging to them 
  
                p : A tuple, test data point of form (x, y) 
                k : radius of the r nearest neighbors 
        '''
  
        freq1 = 0
        freq2 = 0
        for group in points: 
                for feature in points[group]: 
                        if math.sqrt((feature[0]-p[0])**2 + 
                                     (feature[1]-p[1])**2) <= r:
                                if group == 0:
                                        freq1 += 1                      
                                elif group == 1: 
                                        freq2 += 1 
                          
        return 0 if freq1>freq2 else 1
  
# Driver function 
def main(): 
  
        # Dictionary of training points having two keys - 0 and 1 
        # key 0 have points belong to class 0 
        # key 1 have points belong to class 1 
  
        points = {0:[(1.5, 4), (1.8, 3.8), (1.65, 5), (2.5, 3.8), (3.8, 3.8)], 
                  1:[(5.5, 3.5), (5.6, 4.5), (6, 5.4), (6.2, 4.8), (6.4, 4.4)]} 
  
        # query point p(x, y) 
        p = (4.5, 4) 
  
        # Parameter to decide the class of the query point 
        r = 2.2
  
        print("The value classified to query point is: {}".format(
                rNN(points, p, r))) 
  
if __name__ == '__main__': 
        main()


输出:
The value classified to query point is: 1.

其他技术(例如kd-tree,局部敏感哈希)可用于降低查找邻居的时间复杂度。

应用范围:
该算法可用于识别异常值。如果图案与所选半径内的图案没有任何相似性,则可以将其识别为离群值。