用数学术语来说,斐波纳契数的序列Fn由递归关系定义
Fn = Fn-1 + Fn-2
具有种子值
F0 = 0 and F1 = 1.
方法1(使用递归)
//Fibonacci Series using Recursion
#include
int fib(int n)
{
if (n <= 1)
return n;
return fib(n-1) + fib(n-2);
}
int main ()
{
int n = 9;
printf("%d", fib(n));
getchar();
return 0;
}
方法2(动态编程)
//Fibonacci Series using Dynamic Programming
#include
int fib(int n)
{
/* Declare an array to store Fibonacci numbers. */
int f[n+1];
int i;
/* 0th and 1st number of the series are 0 and 1*/
f[0] = 0;
f[1] = 1;
for (i = 2; i <= n; i++)
{
/* Add the previous 2 numbers in the series
and store it */
f[i] = f[i-1] + f[i-2];
}
return f[n];
}
int main ()
{
int n = 9;
printf("%d", fib(n));
getchar();
return 0;
}
方法3(带有空间优化的动态规划)
// Fibonacci Series using Space Optimized Method
#include
int fib(int n)
{
int a = 0, b = 1, c, i;
if( n == 0)
return a;
for (i = 2; i <= n; i++)
{
c = a + b;
a = b;
b = c;
}
return b;
}
int main ()
{
int n = 9;
printf("%d", fib(n));
getchar();
return 0;
}
方法4(分而治之)
#include
/* Helper function that multiplies 2 matrices F and M of size 2*2, and
puts the multiplication result back to F[][] */
void multiply(int F[2][2], int M[2][2]);
/* Helper function that calculates F[][] raise to the power n and puts the
result in F[][]
Note that this function is designed only for fib() and won\'t work as general
power function */
void power(int F[2][2], int n);
int fib(int n)
{
int F[2][2] = {{1,1},{1,0}};
if (n == 0)
return 0;
power(F, n-1);
return F[0][0];
}
void multiply(int F[2][2], int M[2][2])
{
int x = F[0][0]*M[0][0] + F[0][1]*M[1][0];
int y = F[0][0]*M[0][1] + F[0][1]*M[1][1];
int z = F[1][0]*M[0][0] + F[1][1]*M[1][0];
int w = F[1][0]*M[0][1] + F[1][1]*M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
void power(int F[2][2], int n)
{
int i;
int M[2][2] = {{1,1},{1,0}};
// n - 1 times multiply the matrix to {{1,0},{0,1}}
for (i = 2; i <= n; i++)
multiply(F, M);
}
/* Driver program to test above function */
int main()
{
int n = 9;
printf("%d", fib(n));
getchar();
return 0;
}
方法5(分而治之)
#include
void multiply(int F[2][2], int M[2][2]);
void power(int F[2][2], int n);
/* function that returns nth Fibonacci number */
int fib(int n)
{
int F[2][2] = {{1,1},{1,0}};
if (n == 0)
return 0;
power(F, n-1);
return F[0][0];
}
/* Optimized version of power() in method 4 */
void power(int F[2][2], int n)
{
if( n == 0 || n == 1)
return;
int M[2][2] = {{1,1},{1,0}};
power(F, n/2);
multiply(F, F);
if (n%2 != 0)
multiply(F, M);
}
void multiply(int F[2][2], int M[2][2])
{
int x = F[0][0]*M[0][0] + F[0][1]*M[1][0];
int y = F[0][0]*M[0][1] + F[0][1]*M[1][1];
int z = F[1][0]*M[0][0] + F[1][1]*M[1][0];
int w = F[1][0]*M[0][1] + F[1][1]*M[1][1];
F[0][0] = x;
F[0][1] = y;
F[1][0] = z;
F[1][1] = w;
}
/* Driver program to test above function */
int main()
{
int n = 9;
printf("%d", fib(9));
getchar();
return 0;
}
请参阅有关斐波那契数字的程序的完整文章,以了解更多详细信息!
想要从精选的最佳视频中学习和练习问题,请查看《基础知识到高级C的C基础课程》。