📜  数据科学家和数据工程师之间的区别

📅  最后修改于: 2021-09-15 01:27:40             🧑  作者: Mango

数据工程师:数据工程师负责准备数据,由数据科学家或数据分析师进一步分析。数据工程师从各种资源中提取、收集和集成数据并管理这些数据。数据工程师不依赖任何人。此外,数据工程师只是收集数据,因此不需要他在公司决策过程中的建议。

数据科学家:数据科学家处理数据工程师提供的数据。数据科学家分析数据,并根据该数据分析提供有关公司应如何运作的见解。数据科学家依赖于数据工程师。在进行决策时,会考虑数据科学家的分析。

数据科学家与数据工程师

下表列出了数据工程师和数据科学家之间的差异:

S.No Data Engineer Data Scientist
1 “Architect” of the data “Builder” of the “architect’s” plan
2 Extracts, Collects and Integrates data Analyses the data provided by the engineer
3 Independent Dependent on the engineer’s data
4 No say in the decision-making Analysis of data scientist is considered for the decision-making process of a company
5 Data Warehousing, ETL, Advance programming, Hadoop, SQL, Data architecture and pipelining, Machine Learning, etc. are the skills required R or Python or SAS, statistical analysis, Apache Spark, Machine Learning and AI, Data Visualization and data mining are the skills required.
6 Is responsible for the accuracy of data. Creates a connection between a stakeholder and a customer.
7 Deals with raw data Deals with the data manipulated by the data engineers
8 No need to have any storytelling skills to convey the result Needs to have storytelling skills to present the analysis

虽然两者互不相同,但却是组织机构的重要组成部分。两者缺一不可,又是相辅相成的。