给定一个由N 个整数组成的数组arr[] ,任务是找到出现次数超过 floor (n/3) 次的所有数组元素。
例子:
Input: arr[] = {5, 3, 5}
Output: 5
Explanation:
The frequency of 5 is 2, which is more than N/3(3/3 = 1).
Input: arr[] = {7, 7, 7, 3, 4, 4, 4, 5}
Output: 4 7
Explanation:
The frequency of 7 and 4 in the array is 3, which is more than N/3( 8/3 = 2).
方法一:
方法:基本的解决方案是有两个循环并跟踪所有不同元素的最大计数。如果最大计数大于 n/3,则打印它。如果遍历数组后最大计数不超过 n/3,则多数元素不存在。
C++
// C++ program to find Majority
// element in an array
#include
using namespace std;
// Function to find Majority element
// in an array
void findMajority(int arr[], int n) {
int flag = 0;
for (int i = 0; i < n; i++) {
int count = 0;
for (int j = i; j < n; j++) {
if (arr[i] == arr[j]) {
count++;
}
}
if (count > (n / 3)) {
cout << arr[i] << " ";
flag = 1;
}
}
if (!flag)
cout << "No Majority Element" << endl;
}
int main() {
int arr[] = { 2, 2, 3, 1, 3, 2, 1, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function calling
findMajority(arr, n);
return 0;
}
// This code is contributed by Aman Chowdhury
Java
// Java program to find Majority
// element in an array
import java.io.*;
class GFG {
// Function to find Majority element
// in an array
static void findMajority(int arr[], int n)
{
int flag=0;
for (int i = 0; i < n; i++) {
int count = 0;
for (int j = i; j < n; j++) {
if (arr[i] == arr[j])
count++;
}
// if count is greater than n/3 means
// current element is majority element
if (count > n/3) {
System.out.print(arr[i]+" ");
flag=1;
}
}
// if flag is 0 means there is no
// majority element is present
if (flag==0)
System.out.println("No Majority Element");
}
public static void main (String[] args) {
int arr[] = { 2, 2, 3, 1, 3, 2, 1, 1 };
int n = arr.length;
// Function calling
findMajority(arr, n);
}
}
// This code is contributed by Aman Chowdhury
Javascript
C++
/* C++ program for finding out majority
element in an array */
#include
using namespace std;
void findMajority(int arr[], int size)
{
unordered_map m;
for(int i = 0; i < size; i++)
m[arr[i]]++;
int flag = 0;
for(auto i : m)
{
if(i.second > size / 3)
{
flag =1;
cout << i.first << " ";
}
}
if(flag == 0)
cout << "No Majority element" << endl;
}
// Driver code
int main()
{
int arr[] = { 2, 2, 3, 1, 3, 2, 1, 1};
int n = sizeof(arr) / sizeof(arr[0]);
// Function calling
findMajority(arr, n);
return 0;
}
// This code is contributed by Aman Chowdhury
Java
import java.util.HashMap;
/* Program for finding out majority element in an array */
class MajorityElement
{
private static void findMajority(int[] arr)
{
HashMap map = new HashMap();
int flag=0;
for(int i = 0; i < arr.length; i++) {
if (map.containsKey(arr[i])) {
int count = map.get(arr[i]) +1;
if (count > arr.length /3) {
System.out.print(arr[i]+" ");
flag=1;
} else
map.put(arr[i], count);
}
else
map.put(arr[i],1);
}
if(flag==0)
System.out.println(" No Majority element");
}
/* Driver program to test the above functions */
public static void main(String[] args)
{
int a[] = new int[]{2, 2, 3, 1, 3, 2, 1, 1};
findMajority(a);
}
}
// This code is contributed by Aman Chowdhury
C++
// C++ program to find Majority
// element in an array
#include
using namespace std;
// Function to find Majority element
// in an array
void findMajority(int arr[], int n){
int count1 = 0, count2 = 0;
int first=INT_MAX, second=INT_MAX;
int flag=0;
for (int i = 0; i < n; i++) {
// if this element is previously seen,
// increment count1.
if (first == arr[i])
count1++;
// if this element is previously seen,
// increment count2.
else if (second == arr[i])
count2++;
else if (count1 == 0) {
count1++;
first = arr[i];
}
else if (count2 == 0) {
count2++;
second = arr[i];
}
// if current element is different from
// both the previously seen variables,
// decrement both the counts.
else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
// Again traverse the array and find the
// actual counts.
for (int i = 0; i < n; i++) {
if (arr[i] == first)
count1++;
else if (arr[i] == second)
count2++;
}
if (count1 > n / 3){
cout << first << " ";
flag=1;
}
if (count2 > n / 3){
cout << second << " ";
flag=1;
}
if(flag==0){
cout << "No Majority Element" << endl;
}
}
int main() {
int arr[] = { 2, 2, 3, 1, 3, 2, 1, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function calling
findMajority(arr, n);
return 0;
}
// This code is contributed by Aman Chowdhury
Java
// Java program to find if any element appears
// more than n/3.
class GFG {
static void findMajority(int arr[], int n)
{
int count1 = 0, count2 = 0;
int flag=0;
// take the integers as the maximum
// value of integer hoping the integer
// would not be present in the array
int first = Integer.MIN_VALUE;;
int second = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
// if this element is previously
// seen, increment count1.
if (first == arr[i])
count1++;
// if this element is previously
// seen, increment count2.
else if (second == arr[i])
count2++;
else if (count1 == 0) {
count1++;
first = arr[i];
}
else if (count2 == 0) {
count2++;
second = arr[i];
}
// if current element is different
// from both the previously seen
// variables, decrement both the
// counts.
else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
// Again traverse the array and
// find the actual counts.
for (int i = 0; i < n; i++) {
if (arr[i] == first)
count1++;
else if (arr[i] == second)
count2++;
}
if (count1 > n / 3){
System.out.print(first+" ");
flag=1;
}
if (count2 > n / 3){
System.out.print(second+" ");
flag=1;
}
if(flag==0)
System.out.println("No Majority Element");
}
// Driver code
public static void main(String args[])
{
int arr[] = { 2, 2, 3, 1, 3, 2, 1, 1 };
int n = arr.length;
findMajority(arr,n);
}
}
// This code is contributed by Aman Chowdhury
Javascript
Python3
# Python program for the above approach
class Solution:
# Function to find all elements that
# occurs >= N/3 times in the array
def majorityElement(self, a):
# If array is empty return
# empty list
if not a:
return []
# Function to find the majority
# element by Divide and Conquer
def divideAndConquer(lo, hi):
if lo == hi:
return [a[lo]]
# Find mid
mid = lo + (hi - lo)//2
# Call to the left half
left = divideAndConquer(lo, mid)
# Call to the right half
right = divideAndConquer(mid + 1, hi)
# Stores the result
result = []
for numbers in left:
if numbers not in right:
result.append(numbers)
result.extend(right)
# Stores all majority elements
ans = []
for number in result:
count = 0
# Count of elements that
# occurs most
for index in range(lo, hi + 1):
if a[index] == number:
count += 1
# If the number is a
# majority element
if count > (hi - lo + 1)//3:
ans.append(number)
# Return the list of element
return ans
# Function Call
print(divideAndConquer(0, len(a) - 1))
# Driver Code
if __name__ == "__main__":
# Given array a[]
a = [7, 7, 7, 3, 4, 4, 4, 6]
object = Solution()
# Function Call
object.majorityElement(a)
Python3
# Python3 program for the above approach
from collections import Counter
# Function to find the number of array
# elements with frequency more than n/3 times
def printElements(arr, n):
# Calculating n/3
x = n//3
# Counting frequency of every element using Counter
mp = Counter(arr)
# Traverse the map and print all
# the elements with occurrence atleast n/3 times
for it in mp:
if mp[it] > x:
print(it, end=" ")
# Driver code
arr = [7, 7, 7, 3, 4, 4, 4, 6]
# Size of array
n = len(arr)
# Function Call
printElements(arr, n)
# This code is contributed by vikkycirus
2 1
复杂度分析:
- 时间复杂度: O(n*n) 需要一个嵌套循环,其中两个循环从头到尾遍历数组,因此时间复杂度为 O(n^2)。
- 辅助空间: O(1) 因为任何操作都不需要额外的空间,所以空间复杂度是恒定的。
方法二(使用Hashmap):
- 处理方式:这种方法在时间复杂度上有点类似于摩尔投票算法,但是在这种情况下,不需要摩尔投票算法的第二步。但像往常一样,这里的空间复杂度变为 O(n)。
在 Hashmap(key-value pair) 中,在 value 中,为每个元素 (key) 维护一个计数,并且每当计数大于数组长度的一半时,返回该 key(多数元素)。
C++
/* C++ program for finding out majority
element in an array */
#include
using namespace std;
void findMajority(int arr[], int size)
{
unordered_map m;
for(int i = 0; i < size; i++)
m[arr[i]]++;
int flag = 0;
for(auto i : m)
{
if(i.second > size / 3)
{
flag =1;
cout << i.first << " ";
}
}
if(flag == 0)
cout << "No Majority element" << endl;
}
// Driver code
int main()
{
int arr[] = { 2, 2, 3, 1, 3, 2, 1, 1};
int n = sizeof(arr) / sizeof(arr[0]);
// Function calling
findMajority(arr, n);
return 0;
}
// This code is contributed by Aman Chowdhury
Java
import java.util.HashMap;
/* Program for finding out majority element in an array */
class MajorityElement
{
private static void findMajority(int[] arr)
{
HashMap map = new HashMap();
int flag=0;
for(int i = 0; i < arr.length; i++) {
if (map.containsKey(arr[i])) {
int count = map.get(arr[i]) +1;
if (count > arr.length /3) {
System.out.print(arr[i]+" ");
flag=1;
} else
map.put(arr[i], count);
}
else
map.put(arr[i],1);
}
if(flag==0)
System.out.println(" No Majority element");
}
/* Driver program to test the above functions */
public static void main(String[] args)
{
int a[] = new int[]{2, 2, 3, 1, 3, 2, 1, 1};
findMajority(a);
}
}
// This code is contributed by Aman Chowdhury
1 2
复杂度分析:
- 时间复杂度: O(n) 需要遍历一次数组,所以时间复杂度是线性的。
- 辅助空间: O(n) 因为哈希图需要线性空间。
方法三(摩尔投票算法):
这个想法是基于摩尔的投票算法。我们首先找到两个候选人。然后我们检查这两个候选人中是否有任何一个实际上是多数。以下是上述方法的解决方案。
C++
// C++ program to find Majority
// element in an array
#include
using namespace std;
// Function to find Majority element
// in an array
void findMajority(int arr[], int n){
int count1 = 0, count2 = 0;
int first=INT_MAX, second=INT_MAX;
int flag=0;
for (int i = 0; i < n; i++) {
// if this element is previously seen,
// increment count1.
if (first == arr[i])
count1++;
// if this element is previously seen,
// increment count2.
else if (second == arr[i])
count2++;
else if (count1 == 0) {
count1++;
first = arr[i];
}
else if (count2 == 0) {
count2++;
second = arr[i];
}
// if current element is different from
// both the previously seen variables,
// decrement both the counts.
else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
// Again traverse the array and find the
// actual counts.
for (int i = 0; i < n; i++) {
if (arr[i] == first)
count1++;
else if (arr[i] == second)
count2++;
}
if (count1 > n / 3){
cout << first << " ";
flag=1;
}
if (count2 > n / 3){
cout << second << " ";
flag=1;
}
if(flag==0){
cout << "No Majority Element" << endl;
}
}
int main() {
int arr[] = { 2, 2, 3, 1, 3, 2, 1, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function calling
findMajority(arr, n);
return 0;
}
// This code is contributed by Aman Chowdhury
Java
// Java program to find if any element appears
// more than n/3.
class GFG {
static void findMajority(int arr[], int n)
{
int count1 = 0, count2 = 0;
int flag=0;
// take the integers as the maximum
// value of integer hoping the integer
// would not be present in the array
int first = Integer.MIN_VALUE;;
int second = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
// if this element is previously
// seen, increment count1.
if (first == arr[i])
count1++;
// if this element is previously
// seen, increment count2.
else if (second == arr[i])
count2++;
else if (count1 == 0) {
count1++;
first = arr[i];
}
else if (count2 == 0) {
count2++;
second = arr[i];
}
// if current element is different
// from both the previously seen
// variables, decrement both the
// counts.
else {
count1--;
count2--;
}
}
count1 = 0;
count2 = 0;
// Again traverse the array and
// find the actual counts.
for (int i = 0; i < n; i++) {
if (arr[i] == first)
count1++;
else if (arr[i] == second)
count2++;
}
if (count1 > n / 3){
System.out.print(first+" ");
flag=1;
}
if (count2 > n / 3){
System.out.print(second+" ");
flag=1;
}
if(flag==0)
System.out.println("No Majority Element");
}
// Driver code
public static void main(String args[])
{
int arr[] = { 2, 2, 3, 1, 3, 2, 1, 1 };
int n = arr.length;
findMajority(arr,n);
}
}
// This code is contributed by Aman Chowdhury
Javascript
2 1
复杂度分析:
- 时间复杂度: O(n) 算法的第一遍遍历对 O(n) 有贡献的数组,另一个 O(n) 用于检查 count1 和 count2 是否大于 floor(n/3) 次。
- 辅助空间: O(1) 因为不需要额外的空间所以空间复杂度是恒定的
方法四:
方法:解决问题的思路是采用分而治之的技术。请按照以下步骤解决问题:
- 初始化函数majorityElement(),将自左向右的任何索引返回大多数元件的计数在数组中。
- 将给定的数组arr[]分成两半,并重复将其传递给函数manyElement() 。
- 分别将low和high初始化为0和(N – 1) 。
- 使用以下步骤计算多数元素:
- 如果低 = 高:返回arr[low]作为多数元素。
- 找到中间指数,比如mid (= (low + high)/2 )。
- 递归地调用左右子数组作为manyElement(arr, low, mid)和mostElement(arr, mid + 1, high) 。
- 完成上述步骤后,合并两个子数组并返回多数元素。
- 每当找到所需的多数元素时,将其附加到结果列表中。
- 打印存储在列表中的所有多数元素。
下面是上述方法的实现:
蟒蛇3
# Python program for the above approach
class Solution:
# Function to find all elements that
# occurs >= N/3 times in the array
def majorityElement(self, a):
# If array is empty return
# empty list
if not a:
return []
# Function to find the majority
# element by Divide and Conquer
def divideAndConquer(lo, hi):
if lo == hi:
return [a[lo]]
# Find mid
mid = lo + (hi - lo)//2
# Call to the left half
left = divideAndConquer(lo, mid)
# Call to the right half
right = divideAndConquer(mid + 1, hi)
# Stores the result
result = []
for numbers in left:
if numbers not in right:
result.append(numbers)
result.extend(right)
# Stores all majority elements
ans = []
for number in result:
count = 0
# Count of elements that
# occurs most
for index in range(lo, hi + 1):
if a[index] == number:
count += 1
# If the number is a
# majority element
if count > (hi - lo + 1)//3:
ans.append(number)
# Return the list of element
return ans
# Function Call
print(divideAndConquer(0, len(a) - 1))
# Driver Code
if __name__ == "__main__":
# Given array a[]
a = [7, 7, 7, 3, 4, 4, 4, 6]
object = Solution()
# Function Call
object.majorityElement(a)
[7, 4]
时间复杂度: O(N*log N)
辅助空间: O(log N)
另一种方法:使用内置Python函数:
- 使用 Counter()函数计算每个元素的频率。
- 遍历频率数组并打印所有出现次数超过 n/3 次的元素。
下面是实现:
蟒蛇3
# Python3 program for the above approach
from collections import Counter
# Function to find the number of array
# elements with frequency more than n/3 times
def printElements(arr, n):
# Calculating n/3
x = n//3
# Counting frequency of every element using Counter
mp = Counter(arr)
# Traverse the map and print all
# the elements with occurrence atleast n/3 times
for it in mp:
if mp[it] > x:
print(it, end=" ")
# Driver code
arr = [7, 7, 7, 3, 4, 4, 4, 6]
# Size of array
n = len(arr)
# Function Call
printElements(arr, n)
# This code is contributed by vikkycirus
7 4
时间复杂度: O(N)
辅助空间: O(N)
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。