给定一个矩阵,其中每个单元格代表点。如何在以下条件下使用两次遍历收集最大点?
让给定网格的尺寸为 R x C。
1) 第一次遍历从左上角开始,即 (0, 0),应该到达左下角,即 (R-1, 0)。第二次遍历从右上角开始,即 (0, C-1) 应该到达右下角,即 (R-1, C-1)/
2) 从点 (i, j),我们可以移动到 (i+1, j+1) or (i+1, j-1) or (i+1, j)
3) 遍历获取它经过的特定单元格的所有点。如果一次遍历已经收集了一个单元格的点,那么如果再次遍历该单元格,则另一次遍历将不会得到任何点。
Input :
int arr[R][C] = {{3, 6, 8, 2},
{5, 2, 4, 3},
{1, 1, 20, 10},
{1, 1, 20, 10},
{1, 1, 20, 10},
};
Output: 73
Explanation :
First traversal collects total points of value 3 + 2 + 20 + 1 + 1 = 27
Second traversal collects total points of value 2 + 4 + 10 + 20 + 10 = 46.
Total Points collected = 27 + 46 = 73.
我们强烈建议您将浏览器最小化,然后自己先尝试一下。
这个想法是同时进行两次遍历。我们首先从 (0, 0) 开始,同时从 (0, C-1) 开始第二次遍历。需要注意的重要一点是,在任何特定步骤中,两次遍历都将在同一行中,因为在所有可能的三个移动中,行数会增加。让 (x1, y1) 和 (x2, y2) 分别表示第一次和第二次遍历的当前位置。因此,在任何时候 x1 都将等于 x2,因为它们都向前移动,但沿 y 变化是可能的。由于 y 的变化可能以 3 种方式发生,没有变化 (y),向左 (y – 1),向右 (y + 1)。因此,y1、y2 总共有 9 种组合是可能的。基本案例之后的9个案例如下所述。
Both traversals always move forward along x
Base Cases:
// If destinations reached
if (x == R-1 && y1 == 0 && y2 == C-1)
maxPoints(arr, x, y1, y2) = arr[x][y1] + arr[x][y2];
// If any of the two locations is invalid (going out of grid)
if input is not valid
maxPoints(arr, x, y1, y2) = -INF (minus infinite)
// If both traversals are at same cell, then we count the value of cell
// only once.
If y1 and y2 are same
result = arr[x][y1]
Else
result = arr[x][y1] + arr[x][y2]
result += max { // Max of 9 cases
maxPoints(arr, x+1, y1+1, y2),
maxPoints(arr, x+1, y1+1, y2+1),
maxPoints(arr, x+1, y1+1, y2-1),
maxPoints(arr, x+1, y1-1, y2),
maxPoints(arr, x+1, y1-1, y2+1),
maxPoints(arr, x+1, y1-1, y2-1),
maxPoints(arr, x+1, y1, y2),
maxPoints(arr, x+1, y1, y2+1),
maxPoints(arr, x+1, y1, y2-1)
}
上面的递归求解有很多子问题需要反复求解。因此,我们可以使用动态规划来更有效地解决上述问题。下面是基于记忆化(记忆化是动态编程中基于表的迭代解决方案的替代方案)的实现。在下面的实现中,我们使用记忆表“mem”来跟踪已经解决的问题。
C++
// A Memoization based program to find maximum collection
// using two traversals of a grid
#include
using namespace std;
#define R 5
#define C 4
// checks whether a given input is valid or not
bool isValid(int x, int y1, int y2)
{
return (x >= 0 && x < R && y1 >=0 &&
y1 < C && y2 >=0 && y2 < C);
}
// Driver function to collect max value
int getMaxUtil(int arr[R][C], int mem[R][C][C], int x, int y1, int y2)
{
/*---------- BASE CASES -----------*/
// if P1 or P2 is at an invalid cell
if (!isValid(x, y1, y2)) return INT_MIN;
// if both traversals reach their destinations
if (x == R-1 && y1 == 0 && y2 == C-1)
return (y1 == y2)? arr[x][y1]: arr[x][y1] + arr[x][y2];
// If both traversals are at last row but not at their destination
if (x == R-1) return INT_MIN;
// If subproblem is already solved
if (mem[x][y1][y2] != -1) return mem[x][y1][y2];
// Initialize answer for this subproblem
int ans = INT_MIN;
// this variable is used to store gain of current cell(s)
int temp = (y1 == y2)? arr[x][y1]: arr[x][y1] + arr[x][y2];
/* Recur for all possible cases, then store and return the
one with max value */
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2-1));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2+1));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2-1));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2+1));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2-1));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2+1));
return (mem[x][y1][y2] = ans);
}
// This is mainly a wrapper over recursive function getMaxUtil().
// This function creates a table for memoization and calls
// getMaxUtil()
int geMaxCollection(int arr[R][C])
{
// Create a memoization table and initialize all entries as -1
int mem[R][C][C];
memset(mem, -1, sizeof(mem));
// Calculation maximum value using memoization based function
// getMaxUtil()
return getMaxUtil(arr, mem, 0, 0, C-1);
}
// Driver program to test above functions
int main()
{
int arr[R][C] = {{3, 6, 8, 2},
{5, 2, 4, 3},
{1, 1, 20, 10},
{1, 1, 20, 10},
{1, 1, 20, 10},
};
cout << "Maximum collection is " << geMaxCollection(arr);
return 0;
}
Java
// A Memoization based program to find maximum collection
// using two traversals of a grid
class GFG
{
static final int R = 5;
static final int C = 4;
// checks whether a given input is valid or not
static boolean isValid(int x, int y1, int y2)
{
return (x >= 0 && x < R && y1 >=0 &&
y1 < C && y2 >=0 && y2 < C);
}
// Driver function to collect Math.max value
static int getMaxUtil(int arr[][], int mem[][][],
int x, int y1, int y2)
{
/*---------- BASE CASES -----------*/
// if P1 or P2 is at an invalid cell
if (!isValid(x, y1, y2)) return Integer.MIN_VALUE;
// if both traversals reach their destinations
if (x == R-1 && y1 == 0 && y2 == C-1)
return (y1 == y2)? arr[x][y1]: arr[x][y1] + arr[x][y2];
// If both traversals are at last
// row but not at their destination
if (x == R-1) return Integer.MIN_VALUE;
// If subproblem is already solved
if (mem[x][y1][y2] != -1) return mem[x][y1][y2];
// Initialize answer for this subproblem
int ans = Integer.MIN_VALUE;
// this variable is used to store
// gain of current cell(s)
int temp = (y1 == y2)? arr[x][y1]:
arr[x][y1] + arr[x][y2];
/* Recur for all possible cases, then store
and return the one with max value */
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2-1));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2+1));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2-1));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2+1));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2-1));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2+1));
return (mem[x][y1][y2] = ans);
}
// This is mainly a wrapper over recursive
// function getMaxUtil(). This function
// creates a table for memoization and
// calls getMaxUtil()
static int geMaxCollection(int arr[][])
{
// Create a memoization table and
// initialize all entries as -1
int [][][]mem = new int[R][C][C];
for(int i = 0; i < R; i++)
{
for(int j = 0; j < C; j++)
{
for(int l = 0; l < C; l++)
mem[i][j][l]=-1;
}
}
// Calculation maximum value using memoization
// based function getMaxUtil()
return getMaxUtil(arr, mem, 0, 0, C-1);
}
// Driver code
public static void main(String[] args)
{
int arr[][] = {{3, 6, 8, 2},
{5, 2, 4, 3},
{1, 1, 20, 10},
{1, 1, 20, 10},
{1, 1, 20, 10},
};
System.out.print("Maximum collection is " +
geMaxCollection(arr));
}
}
/* This code contributed by PrinciRaj1992 */
Python3
# A Memoization based program to find maximum collection
# using two traversals of a grid
R=5
C=4
intmin=-10000000
intmax=10000000
# checks whether a given input is valid or not
def isValid(x,y1,y2):
return ((x >= 0 and x < R and y1 >=0
and y1 < C and y2 >=0 and y2 < C))
# Driver function to collect max value
def getMaxUtil(arr,mem,x,y1,y2):
# ---------- BASE CASES -----------
if isValid(x, y1, y2)==False:
return intmin
# if both traversals reach their destinations
if x == R-1 and y1 == 0 and y2 == C-1:
if y1==y2:
return arr[x][y1]
else:
return arr[x][y1]+arr[x][y2]
# If both traversals are at last row
# but not at their destination
if x==R-1:
return intmin
# If subproblem is already solved
if mem[x][y1][y2] != -1:
return mem[x][y1][y2]
# Initialize answer for this subproblem
ans=intmin
# this variable is used to store gain of current cell(s)
temp=0
if y1==y2:
temp=arr[x][y1]
else:
temp=arr[x][y1]+arr[x][y2]
# Recur for all possible cases, then store and return the
# one with max value
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2-1))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2+1))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2-1))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2+1))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2-1))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2+1))
mem[x][y1][y2] = ans
return ans
# This is mainly a wrapper over recursive
# function getMaxUtil().
# This function creates a table for memoization and calls
# getMaxUtil()
def geMaxCollection(arr):
# Create a memoization table and
# initialize all entries as -1
mem=[[[-1 for i in range(C)] for i in range(C)] for i in range(R)]
# Calculation maximum value using
# memoization based function
# getMaxUtil()
return getMaxUtil(arr, mem, 0, 0, C-1)
# Driver program to test above functions
if __name__=='__main__':
arr=[[3, 6, 8, 2],
[5, 2, 4, 3],
[1, 1, 20, 10],
[1, 1, 20, 10],
[1, 1, 20, 10],
]
print('Maximum collection is ', geMaxCollection(arr))
#this code is contributed by sahilshelangia
C#
// A Memoization based program to find maximum collection
// using two traversals of a grid
using System;
class GFG
{
static readonly int R = 5;
static readonly int C = 4;
// checks whether a given input is valid or not
static bool isValid(int x, int y1, int y2)
{
return (x >= 0 && x < R && y1 >=0 &&
y1 < C && y2 >=0 && y2 < C);
}
// Driver function to collect Math.max value
static int getMaxUtil(int [,]arr, int [,,]mem,
int x, int y1, int y2)
{
/*---------- BASE CASES -----------*/
// if P1 or P2 is at an invalid cell
if (!isValid(x, y1, y2)) return int.MinValue;
// if both traversals reach their destinations
if (x == R-1 && y1 == 0 && y2 == C-1)
return (y1 == y2)? arr[x, y1]: arr[x, y1] + arr[x, y2];
// If both traversals are at last
// row but not at their destination
if (x == R-1) return int.MinValue;
// If subproblem is already solved
if (mem[x, y1, y2] != -1) return mem[x, y1, y2];
// Initialize answer for this subproblem
int ans = int.MinValue;
// this variable is used to store
// gain of current cell(s)
int temp = (y1 == y2)? arr[x, y1]:
arr[x, y1] + arr[x, y2];
/* Recur for all possible cases, then store
and return the one with max value */
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2-1));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2+1));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2-1));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2+1));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2-1));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2+1));
return (mem[x, y1, y2] = ans);
}
// This is mainly a wrapper over recursive
// function getMaxUtil(). This function
// creates a table for memoization and
// calls getMaxUtil()
static int geMaxCollection(int [,]arr)
{
// Create a memoization table and
// initialize all entries as -1
int [,,]mem = new int[R, C, C];
for(int i = 0; i < R; i++)
{
for(int j = 0; j < C; j++)
{
for(int l = 0; l < C; l++)
mem[i, j, l]=-1;
}
}
// Calculation maximum value using memoization
// based function getMaxUtil()
return getMaxUtil(arr, mem, 0, 0, C-1);
}
// Driver code
public static void Main(String[] args)
{
int [,]arr = {{3, 6, 8, 2},
{5, 2, 4, 3},
{1, 1, 20, 10},
{1, 1, 20, 10},
{1, 1, 20, 10},
};
Console.Write("Maximum collection is " +
geMaxCollection(arr));
}
}
// This code contributed by Rajput-Ji
Javascript
输出:
Maximum collection is 73
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。