给定一个矩阵,其中每个单元格代表点。在以下条件下如何使用两次遍历来收集最大点?
令给定网格的尺寸为R xC。
1)第一个遍历从左上角开始,即(0,0),并且应该到达左下角,即(R-1,0)。第二次遍历从右上角开始,即(0,C-1),并且应该到达右下角,即(R-1,C-1)/
2)从点(i,j),我们可以移至(i + 1,j + 1)或(i + 1,j-1)或(i + 1,j)
3)遍历获取特定单元格通过的所有点。如果一个遍历已经收集了一个单元格的点,则另一遍历如果再次通过该单元格则得不到任何点。
输入:int arr [R] [C] = {{3,6,8,2},{5,2,4,3},{1,1,20,10},{1,1,20,10 },{1,1,20,10},};输出:73说明: 第一次遍历收集值3 + 2 + 20 +1 + 1 = 27的总点第二遍遍收集值2 + 4 + 10 + 20 + 10 = 46的总点。收集的总点数= 27 + 46 = 73。
强烈建议您最小化浏览器,然后自己尝试。
这个想法是同时进行两个遍历。我们首先从(0,0)开始,第二次从(0,C-1)开始遍历。要注意的重要一点是,在任何特定步骤中,两个遍历都将在同一行中,而在所有可能的三步中,行数都会增加。令(x1,y1)和(x2,y2)分别表示第一和第二遍历的当前位置。因此,由于x1和x2都向前移动,因此在任何时候x1都等于x2,但是沿y可能会发生变化。由于y的变化可能以3种不变的方式发生(y),因此请向左(y – 1),向右(y + 1)。因此,在y1,y2之间总共有9种组合是可能的。基本情况后,以下提到的9个情况。
Both traversals always move forward along x
Base Cases:
// If destinations reached
if (x == R-1 && y1 == 0 && y2 == C-1)
maxPoints(arr, x, y1, y2) = arr[x][y1] + arr[x][y2];
// If any of the two locations is invalid (going out of grid)
if input is not valid
maxPoints(arr, x, y1, y2) = -INF (minus infinite)
// If both traversals are at same cell, then we count the value of cell
// only once.
If y1 and y2 are same
result = arr[x][y1]
Else
result = arr[x][y1] + arr[x][y2]
result += max { // Max of 9 cases
maxPoints(arr, x+1, y1+1, y2),
maxPoints(arr, x+1, y1+1, y2+1),
maxPoints(arr, x+1, y1+1, y2-1),
maxPoints(arr, x+1, y1-1, y2),
maxPoints(arr, x+1, y1-1, y2+1),
maxPoints(arr, x+1, y1-1, y2-1),
maxPoints(arr, x+1, y1, y2),
maxPoints(arr, x+1, y1, y2+1),
maxPoints(arr, x+1, y1, y2-1)
}
上面的递归解决方案有很多子问题,这些子问题一次又一次地得到解决。因此,我们可以使用动态编程来更有效地解决上述问题。以下是基于记忆的实现(记忆是动态编程中基于表的迭代解决方案的替代)。在下面的实现中,我们使用记忆表“ mem”来跟踪已经解决的问题。
C++
// A Memoization based program to find maximum collection
// using two traversals of a grid
#include
using namespace std;
#define R 5
#define C 4
// checks whether a given input is valid or not
bool isValid(int x, int y1, int y2)
{
return (x >= 0 && x < R && y1 >=0 &&
y1 < C && y2 >=0 && y2 < C);
}
// Driver function to collect max value
int getMaxUtil(int arr[R][C], int mem[R][C][C], int x, int y1, int y2)
{
/*---------- BASE CASES -----------*/
// if P1 or P2 is at an invalid cell
if (!isValid(x, y1, y2)) return INT_MIN;
// if both traversals reach their destinations
if (x == R-1 && y1 == 0 && y2 == C-1)
return (y1 == y2)? arr[x][y1]: arr[x][y1] + arr[x][y2];
// If both traversals are at last row but not at their destination
if (x == R-1) return INT_MIN;
// If subproblem is already solved
if (mem[x][y1][y2] != -1) return mem[x][y1][y2];
// Initialize answer for this subproblem
int ans = INT_MIN;
// this variable is used to store gain of current cell(s)
int temp = (y1 == y2)? arr[x][y1]: arr[x][y1] + arr[x][y2];
/* Recur for all possible cases, then store and return the
one with max value */
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2-1));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2+1));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2-1));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2+1));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2-1));
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2+1));
return (mem[x][y1][y2] = ans);
}
// This is mainly a wrapper over recursive function getMaxUtil().
// This function creates a table for memoization and calls
// getMaxUtil()
int geMaxCollection(int arr[R][C])
{
// Create a memoization table and initialize all entries as -1
int mem[R][C][C];
memset(mem, -1, sizeof(mem));
// Calculation maximum value using memoization based function
// getMaxUtil()
return getMaxUtil(arr, mem, 0, 0, C-1);
}
// Driver program to test above functions
int main()
{
int arr[R][C] = {{3, 6, 8, 2},
{5, 2, 4, 3},
{1, 1, 20, 10},
{1, 1, 20, 10},
{1, 1, 20, 10},
};
cout << "Maximum collection is " << geMaxCollection(arr);
return 0;
}
Java
// A Memoization based program to find maximum collection
// using two traversals of a grid
class GFG
{
static final int R = 5;
static final int C = 4;
// checks whether a given input is valid or not
static boolean isValid(int x, int y1, int y2)
{
return (x >= 0 && x < R && y1 >=0 &&
y1 < C && y2 >=0 && y2 < C);
}
// Driver function to collect Math.max value
static int getMaxUtil(int arr[][], int mem[][][],
int x, int y1, int y2)
{
/*---------- BASE CASES -----------*/
// if P1 or P2 is at an invalid cell
if (!isValid(x, y1, y2)) return Integer.MIN_VALUE;
// if both traversals reach their destinations
if (x == R-1 && y1 == 0 && y2 == C-1)
return (y1 == y2)? arr[x][y1]: arr[x][y1] + arr[x][y2];
// If both traversals are at last
// row but not at their destination
if (x == R-1) return Integer.MIN_VALUE;
// If subproblem is already solved
if (mem[x][y1][y2] != -1) return mem[x][y1][y2];
// Initialize answer for this subproblem
int ans = Integer.MIN_VALUE;
// this variable is used to store
// gain of current cell(s)
int temp = (y1 == y2)? arr[x][y1]:
arr[x][y1] + arr[x][y2];
/* Recur for all possible cases, then store
and return the one with max value */
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2-1));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2+1));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2-1));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2+1));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2-1));
ans = Math.max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2+1));
return (mem[x][y1][y2] = ans);
}
// This is mainly a wrapper over recursive
// function getMaxUtil(). This function
// creates a table for memoization and
// calls getMaxUtil()
static int geMaxCollection(int arr[][])
{
// Create a memoization table and
// initialize all entries as -1
int [][][]mem = new int[R][C][C];
for(int i = 0; i < R; i++)
{
for(int j = 0; j < C; j++)
{
for(int l = 0; l < C; l++)
mem[i][j][l]=-1;
}
}
// Calculation maximum value using memoization
// based function getMaxUtil()
return getMaxUtil(arr, mem, 0, 0, C-1);
}
// Driver code
public static void main(String[] args)
{
int arr[][] = {{3, 6, 8, 2},
{5, 2, 4, 3},
{1, 1, 20, 10},
{1, 1, 20, 10},
{1, 1, 20, 10},
};
System.out.print("Maximum collection is " +
geMaxCollection(arr));
}
}
/* This code contributed by PrinciRaj1992 */
Python3
# A Memoization based program to find maximum collection
# using two traversals of a grid
R=5
C=4
intmin=-10000000
intmax=10000000
# checks whether a given input is valid or not
def isValid(x,y1,y2):
return ((x >= 0 and x < R and y1 >=0
and y1 < C and y2 >=0 and y2 < C))
# Driver function to collect max value
def getMaxUtil(arr,mem,x,y1,y2):
# ---------- BASE CASES -----------
if isValid(x, y1, y2)==False:
return intmin
# if both traversals reach their destinations
if x == R-1 and y1 == 0 and y2 == C-1:
if y1==y2:
return arr[x][y1]
else:
return arr[x][y1]+arr[x][y2]
# If both traversals are at last row
# but not at their destination
if x==R-1:
return intmin
# If subproblem is already solved
if mem[x][y1][y2] != -1:
return mem[x][y1][y2]
# Initialize answer for this subproblem
ans=intmin
# this variable is used to store gain of current cell(s)
temp=0
if y1==y2:
temp=arr[x][y1]
else:
temp=arr[x][y1]+arr[x][y2]
# Recur for all possible cases, then store and return the
# one with max value
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2-1))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2+1))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1, y2))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2-1))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1-1, y2+1))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2-1))
ans = max(ans, temp + getMaxUtil(arr, mem, x+1, y1+1, y2+1))
mem[x][y1][y2] = ans
return ans
# This is mainly a wrapper over recursive
# function getMaxUtil().
# This function creates a table for memoization and calls
# getMaxUtil()
def geMaxCollection(arr):
# Create a memoization table and
# initialize all entries as -1
mem=[[[-1 for i in range(C)] for i in range(C)] for i in range(R)]
# Calculation maximum value using
# memoization based function
# getMaxUtil()
return getMaxUtil(arr, mem, 0, 0, C-1)
# Driver program to test above functions
if __name__=='__main__':
arr=[[3, 6, 8, 2],
[5, 2, 4, 3],
[1, 1, 20, 10],
[1, 1, 20, 10],
[1, 1, 20, 10],
]
print('Maximum collection is ', geMaxCollection(arr))
#this code is contributed by sahilshelangia
C#
// A Memoization based program to find maximum collection
// using two traversals of a grid
using System;
class GFG
{
static readonly int R = 5;
static readonly int C = 4;
// checks whether a given input is valid or not
static bool isValid(int x, int y1, int y2)
{
return (x >= 0 && x < R && y1 >=0 &&
y1 < C && y2 >=0 && y2 < C);
}
// Driver function to collect Math.max value
static int getMaxUtil(int [,]arr, int [,,]mem,
int x, int y1, int y2)
{
/*---------- BASE CASES -----------*/
// if P1 or P2 is at an invalid cell
if (!isValid(x, y1, y2)) return int.MinValue;
// if both traversals reach their destinations
if (x == R-1 && y1 == 0 && y2 == C-1)
return (y1 == y2)? arr[x, y1]: arr[x, y1] + arr[x, y2];
// If both traversals are at last
// row but not at their destination
if (x == R-1) return int.MinValue;
// If subproblem is already solved
if (mem[x, y1, y2] != -1) return mem[x, y1, y2];
// Initialize answer for this subproblem
int ans = int.MinValue;
// this variable is used to store
// gain of current cell(s)
int temp = (y1 == y2)? arr[x, y1]:
arr[x, y1] + arr[x, y2];
/* Recur for all possible cases, then store
and return the one with max value */
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2-1));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2+1));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1, y2));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2-1));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1-1, y2+1));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2-1));
ans = Math.Max(ans, temp +
getMaxUtil(arr, mem, x+1, y1+1, y2+1));
return (mem[x, y1, y2] = ans);
}
// This is mainly a wrapper over recursive
// function getMaxUtil(). This function
// creates a table for memoization and
// calls getMaxUtil()
static int geMaxCollection(int [,]arr)
{
// Create a memoization table and
// initialize all entries as -1
int [,,]mem = new int[R, C, C];
for(int i = 0; i < R; i++)
{
for(int j = 0; j < C; j++)
{
for(int l = 0; l < C; l++)
mem[i, j, l]=-1;
}
}
// Calculation maximum value using memoization
// based function getMaxUtil()
return getMaxUtil(arr, mem, 0, 0, C-1);
}
// Driver code
public static void Main(String[] args)
{
int [,]arr = {{3, 6, 8, 2},
{5, 2, 4, 3},
{1, 1, 20, 10},
{1, 1, 20, 10},
{1, 1, 20, 10},
};
Console.Write("Maximum collection is " +
geMaxCollection(arr));
}
}
// This code contributed by Rajput-Ji
输出:
Maximum collection is 73
感谢Gaurav Ahirwar提出上述问题和解决方案。