📌  相关文章
📜  检查是否可以通过跳跃两个给定长度来达到一个数字

📅  最后修改于: 2021-10-27 08:12:13             🧑  作者: Mango

给定起始位置“k”和两个跳跃大小“d1”和“d2”,我们的任务是找到到达“x”所需的最小跳跃次数(如果可能)。
在任何位置 P,我们都可以跳转到位置:

  • P + d1P – d1
  • P + d2P – d2

例子:

Input : k = 10, d1 = 4, d2 = 6 and x = 8 
Output : 2
1st step 10 + d1 = 14
2nd step 14 - d2 = 8

Input : k = 10, d1 = 4, d2 = 6 and x = 9
Output : -1
-1 indicates it is not possible to reach x.

在上一篇文章中,我们讨论了一种通过跳跃两个给定长度来检查数字列表是否可由 K 到达的策略。
在这里,我们给出了一个整数x ,而不是数字列表,如果它可以从k到达,那么任务是找到所需的最少步数或跳跃数。
我们将使用广度优先搜索来解决这个问题:
方法

  • 检查 ‘x’ 是否可以从k到达。如果x满足(x – k) % gcd(d1, d2) = 0 ,则可以从 k 到达数字x
  • 如果 x 可达:
    1. 维护一个哈希表来存储已经访问过的位置。
    2. 从位置 k 开始应用 bfs 算法。
    3. 如果您以 ‘stp’ 步到达位置 P,则可以以 ‘stp+1’ 步到达 p+d1 位置。
    4. 如果位置 P 是所需的位置“x”,那么到达 P 所采取的步骤就是答案

下图描述了算法如何找出在 k = 10、d1 = 4 和 d2 = 6 时达到 x = 8 所需的步数。

算法示例

下面是上述方法的实现:

C++
#include 
using namespace std;
 
// Function to perform BFS traversal to
// find minimum number of step needed
// to reach x from K
int minStepsNeeded(int k, int d1, int d2, int x)
{
    // Calculate GCD of d1 and d2
    int gcd = __gcd(d1, d2);
 
    // If position is not reachable
    // return -1
    if ((k - x) % gcd != 0)
        return -1;
 
    // Queue for BFS
    queue > q;
 
    // Hash Table for marking
    // visited positions
    unordered_set visited;
 
    // we need 0 steps to reach K
    q.push({ k, 0 });
 
    // Mark starting position
    // as visited
    visited.insert(k);
 
    while (!q.empty()) {
 
        int s = q.front().first;
 
        // stp is the number of steps
        // to reach position s
        int stp = q.front().second;
 
        if (s == x)
            return stp;
 
        q.pop();
 
        if (visited.find(s + d1) == visited.end()) {
 
            // if position not visited
            // add to queue and mark visited
            q.push({ s + d1, stp + 1 });
 
            visited.insert(s + d1);
        }
 
        if (visited.find(s + d2) == visited.end()) {
            q.push({ s + d2, stp + 1 });
            visited.insert(s + d2);
        }
 
        if (visited.find(s - d1) == visited.end()) {
            q.push({ s - d1, stp + 1 });
            visited.insert(s - d1);
        }
        if (visited.find(s - d2) == visited.end()) {
            q.push({ s - d2, stp + 1 });
            visited.insert(s - d2);
        }
    }
}
 
// Driver Code
int main()
{
    int k = 10, d1 = 4, d2 = 6, x = 8;
 
    cout << minStepsNeeded(k, d1, d2, x);
 
    return 0;
}


Java
// Java implementation of the approach
import java.util.*;
 
class GFG
{
static class pair
{
    int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
     
}
// Function to perform BFS traversal to
// find minimum number of step needed
// to reach x from K
static int minStepsNeeded(int k, int d1,
                          int d2, int x)
{
    // Calculate GCD of d1 and d2
    int gcd = __gcd(d1, d2);
 
    // If position is not reachable
    // return -1
    if ((k - x) % gcd != 0)
        return -1;
 
    // Queue for BFS
    Queue q = new LinkedList<>();
 
    // Hash Table for marking
    // visited positions
    HashSet visited = new HashSet<>();
 
    // we need 0 steps to reach K
    q.add(new pair(k, 0 ));
 
    // Mark starting position
    // as visited
    visited.add(k);
 
    while (!q.isEmpty())
    {
        int s = q.peek().first;
 
        // stp is the number of steps
        // to reach position s
        int stp = q.peek().second;
 
        if (s == x)
            return stp;
 
        q.remove();
 
        if (!visited.contains(s + d1))
        {
 
            // if position not visited
            // add to queue and mark visited
            q.add(new pair(s + d1, stp + 1));
 
            visited.add(s + d1);
        }
 
        if (visited.contains(s + d2))
        {
            q.add(new pair(s + d2, stp + 1));
            visited.add(s + d2);
        }
 
        if (!visited.contains(s - d1))
        {
            q.add(new pair(s - d1, stp + 1));
            visited.add(s - d1);
        }
        if (!visited.contains(s - d2))
        {
            q.add(new pair(s - d2, stp + 1));
            visited.add(s - d2);
        }
    }
    return Integer.MIN_VALUE;
}
 
// Driver Code
public static void main(String[] args)
{
    int k = 10, d1 = 4, d2 = 6, x = 8;
 
    System.out.println(minStepsNeeded(k, d1, d2, x));
}
}
 
// This code is contributed by 29AjayKumar


Python3
# Python3 implementation of the approach
from math import gcd as __gcd
from collections import deque as queue
 
# Function to perform BFS traversal to
# find minimum number of step needed
# to reach x from K
def minStepsNeeded(k, d1, d2, x):
     
    # Calculate GCD of d1 and d2
    gcd = __gcd(d1, d2)
 
    # If position is not reachable
    # return -1
    if ((k - x) % gcd != 0):
        return -1
 
    # Queue for BFS
    q = queue()
 
    # Hash Table for marking
    # visited positions
    visited = dict()
 
    # we need 0 steps to reach K
    q.appendleft([k, 0])
 
    # Mark starting position
    # as visited
    visited[k] = 1
 
    while (len(q) > 0):
 
        sr = q.pop()
        s, stp = sr[0], sr[1]
 
        # stp is the number of steps
        # to reach position s
        if (s == x):
            return stp
 
        if (s + d1 not in visited):
 
            # if position not visited
            # add to queue and mark visited
            q.appendleft([(s + d1), stp + 1])
 
            visited[(s + d1)] = 1
 
        if (s + d2 not in visited):
            q.appendleft([(s + d2), stp + 1])
            visited[(s + d2)] = 1
 
        if (s - d1 not in visited):
            q.appendleft([(s - d1), stp + 1])
            visited[(s - d1)] = 1
 
        if (s - d2 not in visited):
            q.appendleft([(s - d2), stp + 1])
            visited[(s - d2)] = 1
 
# Driver Code
k = 10
d1 = 4
d2 = 6
x = 8
 
print(minStepsNeeded(k, d1, d2, x))
 
# This code is contributed by Mohit Kumar


C#
// C# implementation of the approach
using System;
using System.Collections.Generic;            
     
class GFG
{
public class pair
{
    public int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
static int __gcd(int a, int b)
{
    if (b == 0)
        return a;
    return __gcd(b, a % b);
     
}
 
// Function to perform BFS traversal to
// find minimum number of step needed
// to reach x from K
static int minStepsNeeded(int k, int d1,
                          int d2, int x)
{
    // Calculate GCD of d1 and d2
    int gcd = __gcd(d1, d2);
 
    // If position is not reachable
    // return -1
    if ((k - x) % gcd != 0)
        return -1;
 
    // Queue for BFS
    Queue q = new Queue();
 
    // Hash Table for marking
    // visited positions
    HashSet visited = new HashSet();
 
    // we need 0 steps to reach K
    q.Enqueue(new pair(k, 0));
 
    // Mark starting position
    // as visited
    visited.Add(k);
 
    while (q.Count != 0)
    {
        int s = q.Peek().first;
 
        // stp is the number of steps
        // to reach position s
        int stp = q.Peek().second;
 
        if (s == x)
            return stp;
 
        q.Dequeue();
 
        if (!visited.Contains(s + d1))
        {
 
            // if position not visited
            // add to queue and mark visited
            q.Enqueue(new pair(s + d1, stp + 1));
 
            visited.Add(s + d1);
        }
 
        if (!visited.Contains(s + d2))
        {
            q.Enqueue(new pair(s + d2, stp + 1));
            visited.Add(s + d2);
        }
 
        if (!visited.Contains(s - d1))
        {
            q.Enqueue(new pair(s - d1, stp + 1));
            visited.Add(s - d1);
        }
        if (!visited.Contains(s - d2))
        {
            q.Enqueue(new pair(s - d2, stp + 1));
            visited.Add(s - d2);
        }
    }
    return int.MinValue;
}
 
// Driver Code
public static void Main(String[] args)
{
    int k = 10, d1 = 4, d2 = 6, x = 8;
 
    Console.WriteLine(minStepsNeeded(k, d1, d2, x));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript


输出:
2