在上一篇文章中,我们讨论了斐波那契堆的插入和并集。在这篇文章中,我们将讨论斐波那契堆上的 Extract_min()、Decrease_key() 和 Deletion() 操作。
先决条件:
斐波那契堆(介绍)
斐波那契堆——插入和联合
Extract_min():我们创建了一个函数,用于删除最小节点并将最小指针设置为剩余堆中的最小值。遵循以下算法:
- 删除最小节点。
- 将 head 设置为下一个最小节点,并将被删除节点的所有树添加到根列表中。
- 创建已删除节点大小的度数指针数组。
- 将度指针设置为当前节点。
- 移动到下一个节点。
- 如果度数不同,则将度数指针设置为下一个节点。
- 如果度数相同,则通过联合运算加入斐波那契树。
- 重复步骤 4 和 5,直到堆完成。
例子:
Decrease_key():为了减少堆中任何元素的值,我们遵循以下算法:
- 将节点“x”的值减少到新选择的值。
- CASE 1) 如果没有违反 min-heap 属性,
- 如有必要,更新 min 指针。
- 情况 2) 如果违反了最小堆属性并且未标记 ‘x’ 的父级,
- 切断“x”与其父级之间的链接。
- 标记“x”的父级。
- 将以 ‘x’ 为根的树添加到根列表中,并在必要时更新 min 指针。
- CASE 3)如果违反了最小堆属性并且标记了“x”的父级,
- 切断 ‘x’ 与其父 p[x] 之间的链接。
- 将 ‘x’ 添加到根列表,如有必要更新 min 指针。
- 切断 p[x] 和 p[p[x]] 之间的链接。
- 将 p[x] 添加到根列表,必要时更新 min 指针。
- 如果 p[p[x]] 未标记,则标记它。
- 否则,截断 p[p[x]] 并重复步骤 4.2 到 4.5,将 p[p[x]] 作为 ‘x’。
例子:
Deletion():要删除斐波那契堆中的任何元素,遵循以下算法:
- 通过 Decrease_key()函数将要删除的节点 ‘x’ 的值减小到最小值。
- 通过使用 min-heap 属性,堆化包含 ‘x’ 的堆,将 ‘x’ 带到根列表。
- 将 Extract_min() 算法应用于斐波那契堆。
例子:
以下是一个程序,用于演示斐波那契堆上的 Extract min()、Deletion() 和 Decrease key() 操作:
C++
// C++ program to demonstrate Extract min, Deletion()
// and Decrease key() operations in a fibonacci heap
#include
#include
#include
#include
using namespace std;
// Creating a structure to represent a node in the heap
struct node {
node* parent; // Parent pointer
node* child; // Child pointer
node* left; // Pointer to the node on the left
node* right; // Pointer to the node on the right
int key; // Value of the node
int degree; // Degree of the node
char mark; // Black or white mark of the node
char c; // Flag for assisting in the Find node function
};
// Creating min pointer as "mini"
struct node* mini = NULL;
// Declare an integer for number of nodes in the heap
int no_of_nodes = 0;
// Function to insert a node in heap
void insertion(int val)
{
struct node* new_node = (struct node*)malloc(sizeof(struct node));
new_node->key = val;
new_node->degree = 0;
new_node->mark = 'W';
new_node->c = 'N';
new_node->parent = NULL;
new_node->child = NULL;
new_node->left = new_node;
new_node->right = new_node;
if (mini != NULL) {
(mini->left)->right = new_node;
new_node->right = mini;
new_node->left = mini->left;
mini->left = new_node;
if (new_node->key < mini->key)
mini = new_node;
}
else {
mini = new_node;
}
no_of_nodes++;
}
// Linking the heap nodes in parent child relationship
void Fibonnaci_link(struct node* ptr2, struct node* ptr1)
{
(ptr2->left)->right = ptr2->right;
(ptr2->right)->left = ptr2->left;
if (ptr1->right == ptr1)
mini = ptr1;
ptr2->left = ptr2;
ptr2->right = ptr2;
ptr2->parent = ptr1;
if (ptr1->child == NULL)
ptr1->child = ptr2;
ptr2->right = ptr1->child;
ptr2->left = (ptr1->child)->left;
((ptr1->child)->left)->right = ptr2;
(ptr1->child)->left = ptr2;
if (ptr2->key < (ptr1->child)->key)
ptr1->child = ptr2;
ptr1->degree++;
}
// Consolidating the heap
void Consolidate()
{
int temp1;
float temp2 = (log(no_of_nodes)) / (log(2));
int temp3 = temp2;
struct node* arr[temp3];
for (int i = 0; i <= temp3; i++)
arr[i] = NULL;
node* ptr1 = mini;
node* ptr2;
node* ptr3;
node* ptr4 = ptr1;
do {
ptr4 = ptr4->right;
temp1 = ptr1->degree;
while (arr[temp1] != NULL) {
ptr2 = arr[temp1];
if (ptr1->key > ptr2->key) {
ptr3 = ptr1;
ptr1 = ptr2;
ptr2 = ptr3;
}
if (ptr2 == mini)
mini = ptr1;
Fibonnaci_link(ptr2, ptr1);
if (ptr1->right == ptr1)
mini = ptr1;
arr[temp1] = NULL;
temp1++;
}
arr[temp1] = ptr1;
ptr1 = ptr1->right;
} while (ptr1 != mini);
mini = NULL;
for (int j = 0; j <= temp3; j++) {
if (arr[j] != NULL) {
arr[j]->left = arr[j];
arr[j]->right = arr[j];
if (mini != NULL) {
(mini->left)->right = arr[j];
arr[j]->right = mini;
arr[j]->left = mini->left;
mini->left = arr[j];
if (arr[j]->key < mini->key)
mini = arr[j];
}
else {
mini = arr[j];
}
if (mini == NULL)
mini = arr[j];
else if (arr[j]->key < mini->key)
mini = arr[j];
}
}
}
// Function to extract minimum node in the heap
void Extract_min()
{
if (mini == NULL)
cout << "The heap is empty" << endl;
else {
node* temp = mini;
node* pntr;
pntr = temp;
node* x = NULL;
if (temp->child != NULL) {
x = temp->child;
do {
pntr = x->right;
(mini->left)->right = x;
x->right = mini;
x->left = mini->left;
mini->left = x;
if (x->key < mini->key)
mini = x;
x->parent = NULL;
x = pntr;
} while (pntr != temp->child);
}
(temp->left)->right = temp->right;
(temp->right)->left = temp->left;
mini = temp->right;
if (temp == temp->right && temp->child == NULL)
mini = NULL;
else {
mini = temp->right;
Consolidate();
}
no_of_nodes--;
}
}
// Cutting a node in the heap to be placed in the root list
void Cut(struct node* found, struct node* temp)
{
if (found == found->right)
temp->child = NULL;
(found->left)->right = found->right;
(found->right)->left = found->left;
if (found == temp->child)
temp->child = found->right;
temp->degree = temp->degree - 1;
found->right = found;
found->left = found;
(mini->left)->right = found;
found->right = mini;
found->left = mini->left;
mini->left = found;
found->parent = NULL;
found->mark = 'B';
}
// Recursive cascade cutting function
void Cascase_cut(struct node* temp)
{
node* ptr5 = temp->parent;
if (ptr5 != NULL) {
if (temp->mark == 'W') {
temp->mark = 'B';
}
else {
Cut(temp, ptr5);
Cascase_cut(ptr5);
}
}
}
// Function to decrease the value of a node in the heap
void Decrease_key(struct node* found, int val)
{
if (mini == NULL)
cout << "The Heap is Empty" << endl;
if (found == NULL)
cout << "Node not found in the Heap" << endl;
found->key = val;
struct node* temp = found->parent;
if (temp != NULL && found->key < temp->key) {
Cut(found, temp);
Cascase_cut(temp);
}
if (found->key < mini->key)
mini = found;
}
// Function to find the given node
void Find(struct node* mini, int old_val, int val)
{
struct node* found = NULL;
node* temp5 = mini;
temp5->c = 'Y';
node* found_ptr = NULL;
if (temp5->key == old_val) {
found_ptr = temp5;
temp5->c = 'N';
found = found_ptr;
Decrease_key(found, val);
}
if (found_ptr == NULL) {
if (temp5->child != NULL)
Find(temp5->child, old_val, val);
if ((temp5->right)->c != 'Y')
Find(temp5->right, old_val, val);
}
temp5->c = 'N';
found = found_ptr;
}
// Deleting a node from the heap
void Deletion(int val)
{
if (mini == NULL)
cout << "The heap is empty" << endl;
else {
// Decreasing the value of the node to 0
Find(mini, val, 0);
// Calling Extract_min function to
// delete minimum value node, which is 0
Extract_min();
cout << "Key Deleted" << endl;
}
}
// Function to display the heap
void display()
{
node* ptr = mini;
if (ptr == NULL)
cout << "The Heap is Empty" << endl;
else {
cout << "The root nodes of Heap are: " << endl;
do {
cout << ptr->key;
ptr = ptr->right;
if (ptr != mini) {
cout << "-->";
}
} while (ptr != mini && ptr->right != NULL);
cout << endl
<< "The heap has " << no_of_nodes << " nodes" << endl
<< endl;
}
}
// Driver code
int main()
{
// We will create a heap and insert 3 nodes into it
cout << "Creating an initial heap" << endl;
insertion(5);
insertion(2);
insertion(8);
// Now we will display the root list of the heap
display();
// Now we will extract the minimum value node from the heap
cout << "Extracting min" << endl;
Extract_min();
display();
// Now we will decrease the value of node '8' to '7'
cout << "Decrease value of 8 to 7" << endl;
Find(mini, 8, 7);
display();
// Now we will delete the node '7'
cout << "Delete the node 7" << endl;
Deletion(7);
display();
return 0;
}
输出:
Creating an initial heap
The root nodes of Heap are:
2-->5-->8
The heap has 3 nodes
Extracting min
The root nodes of Heap are:
5
The heap has 2 nodes
Decrease value of 8 to 7
The root nodes of Heap are:
5
The heap has 2 nodes
Delete the node 7
Key Deleted
The root nodes of Heap are:
5
The heap has 1 nodes
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。