Python中的 numpy.expm1()
numpy.expm1(array, out = None, where = True, cast = 'same_kind', order = 'K', dtype = None) :
此数学函数可帮助用户计算从所有输入数组元素中减去 1 的所有元素的指数。
参数 :
array : [array_like]Input array or object whose elements, we need to test.
out : [ndarray, optional]Output array with same dimensions as Input array,
placed with result.
**kwargs : allows you to pass keyword variable length of argument to a function.
It is used when we want to handle named argument in a function.
where : [array_like, optional]True value means to calculate the universal
functions(ufunc) at that position, False value means to leave the
value in the output alone.
返回 :
An array with exponential(all elements of input array) - 1.
代码 1:工作
# Python program explaining
# expm1() function
import numpy as np
in_array = [1, 3, 5]
print ("Input array : \n", in_array)
exp_values = np.exp(in_array)
print ("\nExponential value of array element : "
"\n", exp_values)
expm1_values = np.expm1(in_array)
print ("\n(Exponential value of array element) - (1) "
": \n", expm1_values)
输出 :
Input array :
[1, 3, 5]
Exponential value of array element :
[ 2.71828183 20.08553692 148.4131591 ]
(Exponential value of array element) - (1) :
[ 1.71828183 19.08553692 147.4131591 ]
代码 2:图形表示
# Python program showing
# Graphical representation of
# expm1() function
import numpy as np
import matplotlib.pyplot as plt
in_array = [1, 1.2, 1.4, 1.6, 1.8, 2]
out_array = np.expm1(in_array)
print("out_array : ", out_array)
y = [1, 1.2, 1.4, 1.6, 1.8, 2]
plt.plot(in_array, y, color = 'blue', marker = "*")
# red for numpy.expm1()
plt.plot(out_array, y, color = 'red', marker = "o")
plt.title("numpy.expm1()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出 :
out_array:[1.71828183 2.32011692 3.05519997 3.95303242 5.04964746 6.3890561]
参考 :
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.expm1.html#numpy.expm1
.