二进制矩阵中具有 1 的最近单元格的距离
给定一个N x M的二进制矩阵,至少包含一个值 1。任务是为每个单元格在矩阵中找到最近的 1 的距离。距离计算为|i 1 – i 2 | + |j 1 – j 2 | ,其中 i 1 , j 1是当前单元格的行号和列号, i 2 , j 2是最近的值为 1 的单元格的行号和列号。
例子:
如果您希望与专家一起参加现场课程,请参阅DSA 现场工作专业课程和学生竞争性编程现场课程。
Input : N = 3, M = 4
mat[][] = { 0, 0, 0, 1,
0, 0, 1, 1,
0, 1, 1, 0 }
Output : 3 2 1 0
2 1 0 0
1 0 0 1
Explanation:
For cell at (0, 0), nearest 1 is at (0, 3),
so distance = (0 - 0) + (3 - 0) = 3.
Similarly, all the distance can be calculated.
Input : N = 3, M = 3
mat[][] = { 1, 0, 0,
0, 0, 1,
0, 1, 1 }
Output :
0 1 1
1 1 0
1 0 0
Explanation:
For cell at (0, 1), nearest 1 is at (0, 0), so distance
is 1. Similarly, all the distance can be calculated.
方法 1 :此方法使用简单的蛮力方法来获得解决方案。
- 方法:思想是遍历每个单元格的矩阵并找到最小距离,找到最小距离遍历矩阵并找到包含1的单元格并计算两个单元格之间的距离并存储最小距离。
- 算法 :
- 从头到尾遍历矩阵(使用两个嵌套循环)
- 对于每个元素,找到包含 1 的最近元素。要找到最近的元素,请遍历矩阵并找到最小距离。
- 填充矩阵中的最小距离。
执行:
C++
// C++ program to find distance of nearest
// cell having 1 in a binary matrix.
#include
#define N 3
#define M 4
using namespace std;
// Print the distance of nearest cell
// having 1 for each cell.
void printDistance(int mat[N][M])
{
int ans[N][M];
// Initialize the answer matrix with INT_MAX.
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
ans[i][j] = INT_MAX;
// For each cell
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
{
// Traversing the whole matrix
// to find the minimum distance.
for (int k = 0; k < N; k++)
for (int l = 0; l < M; l++)
{
// If cell contain 1, check
// for minimum distance.
if (mat[k][l] == 1)
ans[i][j] = min(ans[i][j],
abs(i-k) + abs(j-l));
}
}
// Printing the answer.
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
cout << ans[i][j] << " ";
cout << endl;
}
}
// Driven Program
int main()
{
int mat[N][M] =
{
0, 0, 0, 1,
0, 0, 1, 1,
0, 1, 1, 0
};
printDistance(mat);
return 0;
}
Java
// Java program to find distance of nearest
// cell having 1 in a binary matrix.
import java.io.*;
class GFG {
static int N = 3;
static int M = 4;
// Print the distance of nearest cell
// having 1 for each cell.
static void printDistance(int mat[][])
{
int ans[][] = new int[N][M];
// Initialize the answer matrix with INT_MAX.
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
ans[i][j] = Integer.MAX_VALUE;
// For each cell
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
{
// Traversing the whole matrix
// to find the minimum distance.
for (int k = 0; k < N; k++)
for (int l = 0; l < M; l++)
{
// If cell contain 1, check
// for minimum distance.
if (mat[k][l] == 1)
ans[i][j] =
Math.min(ans[i][j],
Math.abs(i-k)
+ Math.abs(j-l));
}
}
// Printing the answer.
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
System.out.print( ans[i][j] + " ");
System.out.println();
}
}
// Driven Program
public static void main (String[] args)
{
int mat[][] = { {0, 0, 0, 1},
{0, 0, 1, 1},
{0, 1, 1, 0} };
printDistance(mat);
}
}
// This code is contributed by anuj_67.
Python3
# Python3 program to find distance of
# nearest cell having 1 in a binary matrix.
# Print distance of nearest cell
# having 1 for each cell.
def printDistance(mat):
global N, M
ans = [[None] * M for i in range(N)]
# Initialize the answer matrix
# with INT_MAX.
for i in range(N):
for j in range(M):
ans[i][j] = 999999999999
# For each cell
for i in range(N):
for j in range(M):
# Traversing the whole matrix
# to find the minimum distance.
for k in range(N):
for l in range(M):
# If cell contain 1, check
# for minimum distance.
if (mat[k][l] == 1):
ans[i][j] = min(ans[i][j],
abs(i - k) + abs(j - l))
# Printing the answer.
for i in range(N):
for j in range(M):
print(ans[i][j], end = " ")
print()
# Driver Code
N = 3
M = 4
mat = [[0, 0, 0, 1],
[0, 0, 1, 1],
[0, 1, 1, 0]]
printDistance(mat)
# This code is contributed by PranchalK
C#
// C# program to find the distance of nearest
// cell having 1 in a binary matrix.
using System;
class GFG {
static int N = 3;
static int M = 4;
// Print the distance of nearest cell
// having 1 for each cell.
static void printDistance(int [,]mat)
{
int [,]ans = new int[N,M];
// Initialise the answer matrix with int.MaxValue.
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
ans[i,j] = int.MaxValue;
// For each cell
for (int i = 0; i < N; i++)
for (int j = 0; j < M; j++)
{
// Traversing thewhole matrix
// to find the minimum distance.
for (int k = 0; k < N; k++)
for (int l = 0; l < M; l++)
{
// If cell contain 1, check
// for minimum distance.
if (mat[k,l] == 1)
ans[i,j] =
Math.Min(ans[i,j],
Math.Abs(i-k)
+ Math.Abs(j-l));
}
}
// Printing the answer.
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
Console.Write( ans[i,j] + " ");
Console.WriteLine();
}
}
// Driven Program
public static void Main ()
{
int [,]mat = { {0, 0, 0, 1},
{0, 0, 1, 1},
{0, 1, 1, 0} };
printDistance(mat);
}
}
// This code is contributed by anuj_67.
PHP
Javascript
C++
// C++ program to find distance of nearest
// cell having 1 in a binary matrix.
#include
#define MAX 500
#define N 3
#define M 4
using namespace std;
// Making a class of graph with bfs function.
class graph
{
private:
vector g[MAX];
int n,m;
public:
graph(int a, int b)
{
n = a;
m = b;
}
// Function to create graph with N*M nodes
// considering each cell as a node and each
// boundary as an edge.
void createGraph()
{
int k = 1; // A number to be assigned to a cell
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
// If last row, then add edge on right side.
if (i == n)
{
// If not bottom right cell.
if (j != m)
{
g[k].push_back(k+1);
g[k+1].push_back(k);
}
}
// If last column, then add edge toward down.
else if (j == m)
{
g[k].push_back(k+m);
g[k+m].push_back(k);
}
// Else makes an edge in all four directions.
else
{
g[k].push_back(k+1);
g[k+1].push_back(k);
g[k].push_back(k+m);
g[k+m].push_back(k);
}
k++;
}
}
}
// BFS function to find minimum distance
void bfs(bool visit[], int dist[], queue q)
{
while (!q.empty())
{
int temp = q.front();
q.pop();
for (int i = 0; i < g[temp].size(); i++)
{
if (visit[g[temp][i]] != 1)
{
dist[g[temp][i]] =
min(dist[g[temp][i]], dist[temp]+1);
q.push(g[temp][i]);
visit[g[temp][i]] = 1;
}
}
}
}
// Printing the solution.
void print(int dist[])
{
for (int i = 1, c = 1; i <= n*m; i++, c++)
{
cout << dist[i] << " ";
if (c%m == 0)
cout << endl;
}
}
};
// Find minimum distance
void findMinDistance(bool mat[N][M])
{
// Creating a graph with nodes values assigned
// from 1 to N x M and matrix adjacent.
graph g1(N, M);
g1.createGraph();
// To store minimum distance
int dist[MAX];
// To mark each node as visited or not in BFS
bool visit[MAX] = { 0 };
// Initialising the value of distance and visit.
for (int i = 1; i <= M*N; i++)
{
dist[i] = INT_MAX;
visit[i] = 0;
}
// Inserting nodes whose value in matrix
// is 1 in the queue.
int k = 1;
queue q;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
if (mat[i][j] == 1)
{
dist[k] = 0;
visit[k] = 1;
q.push(k);
}
k++;
}
}
// Calling for Bfs with given Queue.
g1.bfs(visit, dist, q);
// Printing the solution.
g1.print(dist);
}
// Driven Program
int main()
{
bool mat[N][M] =
{
0, 0, 0, 1,
0, 0, 1, 1,
0, 1, 1, 0
};
findMinDistance(mat);
return 0;
}
Python3
# Python3 program to find distance of nearest
# cell having 1 in a binary matrix.
from collections import deque
MAX = 500
N = 3
M = 4
# Making a class of graph with bfs function.
g = [[] for i in range(MAX)]
n, m = 0, 0
# Function to create graph with N*M nodes
# considering each cell as a node and each
# boundary as an edge.
def createGraph():
global g, n, m
# A number to be assigned to a cell
k = 1
for i in range(1, n + 1):
for j in range(1, m + 1):
# If last row, then add edge on right side.
if (i == n):
# If not bottom right cell.
if (j != m):
g[k].append(k + 1)
g[k + 1].append(k)
# If last column, then add edge toward down.
elif (j == m):
g[k].append(k+m)
g[k + m].append(k)
# Else makes an edge in all four directions.
else:
g[k].append(k + 1)
g[k + 1].append(k)
g[k].append(k+m)
g[k + m].append(k)
k += 1
# BFS function to find minimum distance
def bfs(visit, dist, q):
global g
while (len(q) > 0):
temp = q.popleft()
for i in g[temp]:
if (visit[i] != 1):
dist[i] = min(dist[i], dist[temp] + 1)
q.append(i)
visit[i] = 1
return dist
# Printing the solution.
def prt(dist):
c = 1
for i in range(1, n * m + 1):
print(dist[i], end = " ")
if (c % m == 0):
print()
c += 1
# Find minimum distance
def findMinDistance(mat):
global g, n, m
# Creating a graph with nodes values assigned
# from 1 to N x M and matrix adjacent.
n, m = N, M
createGraph()
# To store minimum distance
dist = [0] * MAX
# To mark each node as visited or not in BFS
visit = [0] * MAX
# Initialising the value of distance and visit.
for i in range(1, M * N + 1):
dist[i] = 10**9
visit[i] = 0
# Inserting nodes whose value in matrix
# is 1 in the queue.
k = 1
q = deque()
for i in range(N):
for j in range(M):
if (mat[i][j] == 1):
dist[k] = 0
visit[k] = 1
q.append(k)
k += 1
# Calling for Bfs with given Queue.
dist = bfs(visit, dist, q)
# Printing the solution.
prt(dist)
# Driver code
if __name__ == '__main__':
mat = [ [ 0, 0, 0, 1 ],
[ 0, 0, 1, 1 ],
[ 0, 1, 1, 0 ] ]
findMinDistance(mat)
# This code is contributed by mohit kumar 29
输出:
3 2 1 0
2 1 0 0
1 0 0 1
复杂度分析:
- 时间复杂度: O(N 2 *M 2 )。
对于矩阵中的每个元素,矩阵都被遍历并且有 N*M 个元素,所以时间复杂度是 O(N 2 *M 2 )。 - 空间复杂度: O(1)。
不需要额外的空间。
方法 2:该方法使用 BFS 或广度优先搜索技术来获得解决方案。
- 方法:这个想法是使用多源广度优先搜索。将每个单元格视为一个节点,任何两个相邻单元格之间的每个边界都是一条边。从 1 到 N*M 为每个单元格编号。现在,将矩阵中对应单元格值为 1 的所有节点推送到队列中。使用此队列应用 BFS 以查找相邻节点的最小距离。
- 算法:
- 创建一个图形,其值从 1 到 M*N 分配给所有顶点。目的是存储位置和相邻信息。
- 创建一个空队列。
- 遍历所有矩阵元素并插入队列中所有 1 的位置。
- 现在使用上面创建的队列对图进行 BFS 遍历。
- 运行一个循环,直到队列的大小大于 0,然后提取队列的前节点并将其删除并插入其所有相邻和未标记的元素。将最小距离更新为当前节点的距离+1,并将元素插入队列。
执行:
C++
// C++ program to find distance of nearest
// cell having 1 in a binary matrix.
#include
#define MAX 500
#define N 3
#define M 4
using namespace std;
// Making a class of graph with bfs function.
class graph
{
private:
vector g[MAX];
int n,m;
public:
graph(int a, int b)
{
n = a;
m = b;
}
// Function to create graph with N*M nodes
// considering each cell as a node and each
// boundary as an edge.
void createGraph()
{
int k = 1; // A number to be assigned to a cell
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
// If last row, then add edge on right side.
if (i == n)
{
// If not bottom right cell.
if (j != m)
{
g[k].push_back(k+1);
g[k+1].push_back(k);
}
}
// If last column, then add edge toward down.
else if (j == m)
{
g[k].push_back(k+m);
g[k+m].push_back(k);
}
// Else makes an edge in all four directions.
else
{
g[k].push_back(k+1);
g[k+1].push_back(k);
g[k].push_back(k+m);
g[k+m].push_back(k);
}
k++;
}
}
}
// BFS function to find minimum distance
void bfs(bool visit[], int dist[], queue q)
{
while (!q.empty())
{
int temp = q.front();
q.pop();
for (int i = 0; i < g[temp].size(); i++)
{
if (visit[g[temp][i]] != 1)
{
dist[g[temp][i]] =
min(dist[g[temp][i]], dist[temp]+1);
q.push(g[temp][i]);
visit[g[temp][i]] = 1;
}
}
}
}
// Printing the solution.
void print(int dist[])
{
for (int i = 1, c = 1; i <= n*m; i++, c++)
{
cout << dist[i] << " ";
if (c%m == 0)
cout << endl;
}
}
};
// Find minimum distance
void findMinDistance(bool mat[N][M])
{
// Creating a graph with nodes values assigned
// from 1 to N x M and matrix adjacent.
graph g1(N, M);
g1.createGraph();
// To store minimum distance
int dist[MAX];
// To mark each node as visited or not in BFS
bool visit[MAX] = { 0 };
// Initialising the value of distance and visit.
for (int i = 1; i <= M*N; i++)
{
dist[i] = INT_MAX;
visit[i] = 0;
}
// Inserting nodes whose value in matrix
// is 1 in the queue.
int k = 1;
queue q;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
if (mat[i][j] == 1)
{
dist[k] = 0;
visit[k] = 1;
q.push(k);
}
k++;
}
}
// Calling for Bfs with given Queue.
g1.bfs(visit, dist, q);
// Printing the solution.
g1.print(dist);
}
// Driven Program
int main()
{
bool mat[N][M] =
{
0, 0, 0, 1,
0, 0, 1, 1,
0, 1, 1, 0
};
findMinDistance(mat);
return 0;
}
蟒蛇3
# Python3 program to find distance of nearest
# cell having 1 in a binary matrix.
from collections import deque
MAX = 500
N = 3
M = 4
# Making a class of graph with bfs function.
g = [[] for i in range(MAX)]
n, m = 0, 0
# Function to create graph with N*M nodes
# considering each cell as a node and each
# boundary as an edge.
def createGraph():
global g, n, m
# A number to be assigned to a cell
k = 1
for i in range(1, n + 1):
for j in range(1, m + 1):
# If last row, then add edge on right side.
if (i == n):
# If not bottom right cell.
if (j != m):
g[k].append(k + 1)
g[k + 1].append(k)
# If last column, then add edge toward down.
elif (j == m):
g[k].append(k+m)
g[k + m].append(k)
# Else makes an edge in all four directions.
else:
g[k].append(k + 1)
g[k + 1].append(k)
g[k].append(k+m)
g[k + m].append(k)
k += 1
# BFS function to find minimum distance
def bfs(visit, dist, q):
global g
while (len(q) > 0):
temp = q.popleft()
for i in g[temp]:
if (visit[i] != 1):
dist[i] = min(dist[i], dist[temp] + 1)
q.append(i)
visit[i] = 1
return dist
# Printing the solution.
def prt(dist):
c = 1
for i in range(1, n * m + 1):
print(dist[i], end = " ")
if (c % m == 0):
print()
c += 1
# Find minimum distance
def findMinDistance(mat):
global g, n, m
# Creating a graph with nodes values assigned
# from 1 to N x M and matrix adjacent.
n, m = N, M
createGraph()
# To store minimum distance
dist = [0] * MAX
# To mark each node as visited or not in BFS
visit = [0] * MAX
# Initialising the value of distance and visit.
for i in range(1, M * N + 1):
dist[i] = 10**9
visit[i] = 0
# Inserting nodes whose value in matrix
# is 1 in the queue.
k = 1
q = deque()
for i in range(N):
for j in range(M):
if (mat[i][j] == 1):
dist[k] = 0
visit[k] = 1
q.append(k)
k += 1
# Calling for Bfs with given Queue.
dist = bfs(visit, dist, q)
# Printing the solution.
prt(dist)
# Driver code
if __name__ == '__main__':
mat = [ [ 0, 0, 0, 1 ],
[ 0, 0, 1, 1 ],
[ 0, 1, 1, 0 ] ]
findMinDistance(mat)
# This code is contributed by mohit kumar 29
输出 :
3 2 1 0
2 1 0 0
1 0 0 1
复杂度分析:
- 时间复杂度: O(N*M)。
在 BFS 遍历中,每个元素只遍历一次,因此时间复杂度为 O(M*N)。 - 空间复杂度: O(M*N)。
需要在矩阵 O(M*N) 空间中存储每个元素。