Python中的 numpy.nanpercentile()
numpy.nanpercentile()
函数用于计算给定数据(数组元素)沿指定轴的第 n 个百分位数 ang 忽略 nan 值。
Syntax : numpy.nanpercentile(arr, q, axis=None, out=None)
Parameters :
arr :input array.
q : percentile value.
axis :axis along which we want to calculate the percentile value.Otherwise, it will consider arr to be flattened(works on all the axis). axis = 0
means along the column and axis = 1 means working along the row.
out : Different array in which we want to place the result. The array must have same dimensions as expected output.
Return :Percentile of the array (a scalar value if axis is none) or array with percentiles of values along specified axis.
代码#1:工作
# Python Program illustrating
# numpy.nanpercentile() method
import numpy as np
# 1D array
arr = [20, 2, 7, np.nan, 34]
print("arr : ", arr)
print("30th percentile of arr : ",
np.percentile(arr, 50))
print("25th percentile of arr : ",
np.percentile(arr, 25))
print("75th percentile of arr : ",
np.percentile(arr, 75))
print("\n30th percentile of arr : ",
np.nanpercentile(arr, 50))
print("25th percentile of arr : ",
np.nanpercentile(arr, 25))
print("75th percentile of arr : ",
np.nanpercentile(arr, 75))
输出 :
arr : [20, 2, 7, nan, 34]
30th percentile of arr : nan
25th percentile of arr : nan
75th percentile of arr : nan
30th percentile of arr : 13.5
25th percentile of arr : 5.75
75th percentile of arr : 23.5
代码#2:
# Python Program illustrating
# numpy.nanpercentile() method
import numpy as np
# 2D array
arr = [[14, np.nan, 12, 33, 44],
[15, np.nan, 27, 8, 19],
[23, 2, np.nan, 1, 4,]]
print("\narr : \n", arr)
# Percentile of the flattened array
print("\n50th Percentile of arr, axis = None : ",
np.percentile(arr, 50))
print("\n50th Percentile of arr, axis = None : ",
np.nanpercentile(arr, 50))
print("0th Percentile of arr, axis = None : ",
np.nanpercentile(arr, 0))
# Percentile along the axis = 0
print("\n50th Percentile of arr, axis = 0 : ",
np.nanpercentile(arr, 50, axis =0))
print("0th Percentile of arr, axis = 0 : ",
np.nanpercentile(arr, 0, axis =0))
# Percentile along the axis = 1
print("\n50th Percentile of arr, axis = 1 : ",
np.nanpercentile(arr, 50, axis =1))
print("0th Percentile of arr, axis = 1 : ",
np.nanpercentile(arr, 0, axis =1))
print("\n0th Percentile of arr, axis = 1 : \n",
np.nanpercentile(arr, 50, axis =1, keepdims=True))
print("\n0th Percentile of arr, axis = 1 : \n",
np.nanpercentile(arr, 0, axis =1, keepdims=True))
输出 :
arr :
[[14, nan, 12, 33, 44], [15, nan, 27, 8, 19], [23, 2, nan, 1, 4]]
50th Percentile of arr, axis = None : nan
50th Percentile of arr, axis = None : 14.5
0th Percentile of arr, axis = None : 1.0
50th Percentile of arr, axis = 0 : [15. 2. 19.5 8. 19. ]
0th Percentile of arr, axis = 0 : [14. 2. 12. 1. 4.]
50th Percentile of arr, axis = 1 : [23.5 17. 3. ]
0th Percentile of arr, axis = 1 : [12. 8. 1.]
0th Percentile of arr, axis = 1 :
[[23.5]
[17. ]
[ 3. ]]
0th Percentile of arr, axis = 1 :
[[12.]
[ 8.]
[ 1.]]
代码#3:
# Python Program illustrating
# numpy.nanpercentile() method
import numpy as np
# 2D array
arr = [[14, np.nan, 12, 33, 44],
[15, np.nan, 27, 8, 19],
[23, np.nan, np.nan, 1, 4,]]
print("\narr : \n", arr)
# Percentile along the axis = 1
print("\n50th Percentile of arr, axis = 1 : ",
np.nanpercentile(arr, 50, axis =1))
print("\n50th Percentile of arr, axis = 0 : ",
np.nanpercentile(arr, 50, axis =0))
输出 :
arr :
[[14, nan, 12, 33, 44], [15, nan, 27, 8, 19], [23, nan, nan, 1, 4]]
50th Percentile of arr, axis = 1 : [23.5 17. 4. ]
50th Percentile of arr, axis = 0 : [15. nan 19.5 8. 19. ]
RuntimeWarning: All-NaN slice encountered
overwrite_input, interpolation)